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Abstract

Uncertainty faced by individual firms appears to be heterogeneous. In this pa-

per, I construct a new set of empirical measures of firm-level uncertainty using data

such as the IBES and Compustat. The panel data that I construct reveals per-

sistent differences in the degree of uncertainty facing individual firms not reflected

by existing measures. Consistent with existing measures, I find that the average

level of uncertainty across firms is countercyclical, and that it rose sharply at the

start of the Great Recession. I next develop a heterogeneous firm model that em-

beds Jovanovics (1982) model of learning. Each firm gradually learns about its own

productivity, and each occasionally experiences a shock forcing it to start learning

afresh. In the model, uncertainty will be resolved gradually as firms operate longer

and get better informed. The model can capture the cross-sectional and cyclical

features of firm-level uncertainty well. When calibrated to reproduce the level and

cyclicality of the measure of firm-level uncertainty, I show that an uncertainty shock

explains 28 percent of the observed decline in GDP and 31 percent of the fall in

investment during the Great Recession.
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1 Introduction

“Subjective uncertainty is about the “unknown unknowns”. When, as to-

day, the unknown unknowns dominate, and the economic environment is so

complex as to appear nearly incomprehensible, the result is extreme prudence,

[. . . ], on the part of investors, consumers and firms.” Olivier Blanchard (2009)

How large is the role of increased uncertainty in driving economic downturns? Is

there a link between a rise in firm-level uncertainty and the subsequent pace of economic

recovery? To explore these questions, I construct new empirical measures of firm-level

uncertainty, and I show that the degree of uncertainty varies across firms and the average

level of uncertainty, as well as its dispersion, across firms is countercyclical. To account

for these regularities, I develop a heterogeneous firm model that incorporates learning

at the firm level with uncertainty shocks. The model can explain my empirical findings

well for both cross-sectional and cyclical features. The cross-sectional distribution of firm

performance as well as firm-level uncertainty are well matched with data. In a recession,

the distribution of firm-level uncertainty is skewed by having a large mass of firms with

high uncertainty, and the average level of uncertainty across firms is also high. In addition,

the model successfully reproduces a gradual recovery of the aggregate economy following

uncertainty shocks.

A defining feature of this paper is that the uncertainty faced by firms not only varies

over time but also varies across firms. One common approach in the uncertainty shock lit-

erature, following the seminal work of Bloom (2009), has been to study stochastic volatility

models. I break with this tradition primarily because stochastic volatility models can-

not deliver the heterogeneous uncertainty evident in microdata.1 I integrate Jovanovic’s

(1982) model of learning into an otherwise standard heterogeneous firm business cycle

framework. In this model, by contrast, uncertainty, defined as the conditional variance

of forecasts of firm performance, varies across firms depending on the information each

firm possesses. Firms are heterogeneous in both productivity and their confidence about

that productivity; more informed firms have lower posterior variances of their beliefs.

Two different firms can have the same posterior mean while differing in their posterior

variances. Hence, uncertainty differs across firms. A second appealing feature of the

model is the fact that the recession in response to an uncertainty shock is not followed

by a sharp recovery, as happens in existing stochastic-volatility-based uncertainty shock

1 In a common stochastic volatility approach, there is full information and all agents know the true

distribution of shocks that they face, including its volatility, which varies over time. In uncertain times,

the volatility that every agent faces rises equally. See, for example, Vavra (2014), Bloom et al. (2014)

and Bachmann and Bayer (2013).
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models.2 Instead, my model with a non-trivial distribution of firms with learning drives a

slow economic recovery as firms gradually regain information and confidence. Moreover,

these results require no additional rigidity or frictions. In the absence of labor and capital

adjustment costs, uncertainty shocks still cause recessions.3

I construct a new panel dataset of firm-level uncertainty based on data from the In-

stitutional Brokers’ Estimate System (I/B/E/S), Center for Research in Securities Prices

(CRSP) and Compustat databases. By merging these data, I construct an annual panel

of US public firms with uncertainty measures such as an ex-ante earnings forecast dis-

persion among market analysts, ex-post-realized forecast errors and stock price volatility

measures. Appealing features of the dataset, particularly with regard to the inclusion

of earnings forecast data, include the following: (1) it is disaggregated at the firm level,

thereby allowing the examination of the cross-sectional characteristics of firm-level uncer-

tainty, (2) it contains ex-ante information on firm profitability, which is arguably better

suited than ex-post information for gauging the degree of uncertainty individual firms

face and (3) the result obtained can be fairly directly mapped into the model that I build.

In particular, I transform earnings data into the return on assets (ROA) data and use the

latter to discipline the model.

The firm-level measures of uncertainty uncover the following new facts. First, the

degree of uncertainty facing individual firms differs across firms; for example, Apple’s

measure of uncertainty was much lower than Ford’s during the Great Recession in 2009,

and vice versa during the dot-com recession in 2001. Second, the first and second moments

of the distribution of firm-level uncertainty measures are countercyclical. Specifically, the

median, mean and cross-sectional dispersion are all negatively correlated with real GDP

series.

In light of the evidence above, I propose a new model that features heterogeneous

uncertainty, and I study its role in propagating aggregate shocks. My model builds on a

standard heterogeneous firm business cycle model, but I deviate from the standard model

in three ways. First, idiosyncratic productivity has two components: an i.i.d. transitory

component around a base component. These components cannot be observed separately,

and therefore each firm must learn the true value of its base component in a Bayesian

way.4 Second, the base component is randomly reset. When this occurs, a new base

2 See, for the discussion, Bachmann, Elstener and Sims (2013) and Bachmann and Bayer (2013).
3 The large body of literature about the relation between uncertainty and investment studies the real

options effect in models with adjustment costs, as in Bertola and Caballero (1994), Dixit and Pindyck

(1994), Abel and Eberly (1996) and Caballero and Engel (1999).
4 Bernanke (1983) develops a single-firm, partial equilibrium model with dynamic Bayesian inference

specifications to study short-term fluctuations of irreversible investment under time-varying option values.
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productivity is drawn from a common distribution known to all firms. Though a firm

knows when its base has been reset, it does not know its new realization; thus, it must

restart the process of learning its value. Otherwise, the firm maintains its current base

component and continues its learning. In this way, I integrate learning into a model of

heterogeneous firms that are subject to persistent shocks to idiosyncratic productivity,

as in Hopenhayn (1992). Third, I assume that the common reset probability of firms’

base productivity components is a stochastic, two-state Markov process. When the reset

probability is high, many firms draw new base productivities, which leads to a larger

variance of TFP growth rates across the distribution of firms. Thus, an uncertainty shock

is associated with a rise in the variance of firm-level TFP growth rates. In this way,

this model is consistent with an important empirical observation documented in previous

work regarding uncertainty shocks (Bloom et al., 2014). The rise in the reset probability

also implies that many firms lose information and restart learning. This additional effect

increases a mass of firms with high uncertainty, leading to an increase in the average level

of uncertainty as well as dispersion across firms.

My main findings are as follows. First, the model produces rapid downturns and

slow recoveries in aggregate variables following uncertainty shocks. Second, aggregate

productivity shocks deliver responses quite similar to those in conventional equilibrium

business cycle models, and these shocks remain an important source of fluctuations in

my model. For this reason, the model delivers familiar second moments for the cyclical

component of aggregate quantities, as has been shown in the literature of the business

cycle (e.g., Cooley and Prescott, 1995).

In my model, the recession following an uncertainty shock stems from two effects, one

uncertainty and one distributional. The uncertainty effect arises as all firms anticipate

a higher reset probability, implying an increased likelihood of large changes in their pro-

ductivities. Given one-period time to build for capital, this leads them to change their

target levels of capital. Firms that believe their current base component is higher than

the unconditional mean reduce their capital targets. On the other hand, firms that believe

their current base productivity is low relative to the unconditional mean raise their capital

targets. Given that the distribution of the base component of productivity is symmetric

and the production function has decreasing returns to scale, the net impact on aggre-

gate investment is negative. This effect is immediately reversed when the shock ends,

which on its own would deliver a quick expansion led by pent-up investment demand.

However, this fails to spur aggregate investment because of the offsetting impact of the

distributional effect. As an unusually large number of firms experience a reset of their

base components, the economy becomes increasingly populated by uninformed firms as
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the uncertainty shock persists. These firms, having lost their information, must restart

their learning. In early stages of the learning process, each firm puts more weight on

the prior mean rather than the mean of its observations. Unless a firm is fully informed

about its base component, its capital stock is either excessive or insufficient relative to

the efficient level of capital stock based on full information about the true value of its

base component and the interest rate. Thus, there is a misallocation of resources arising

from over- or undercapacity. In particular, since uninformed firms are cautious and have

low confidence, while their population share rises over the course of an uncertainty driven

recession, aggregate investment, employment and GDP fall. This cannot be quickly re-

versed when the uncertainty shock ends, as it takes time for the distribution of firms

to recover their knowledge about their productivity. Thus, the negative impact of an

uncertainty shock persists beyond the shock itself.

At the start of a recession, the uncertainty and distributional effects reinforce each

other, and this leads to a rapid drop in investment, GDP and other aggregate variables.

However, in the recovery phase, the uncertainty and distributional effects offset each

other. Their relative strengths must be quantitatively assessed. In my calibrated model,

the distributional effect dominates. This leads to a sluggish recovery, a finding that stands

in sharp contrast to other models in the literature.

Related Literature The idea that links uncertainty to business cycles and especially

to the slow rate of recovery after slumps dates back to Keynes (1936) and was further

formulated by Bernanke (1983) in his study of investment fluctuations.5 In the recent

equilibrium business cycle literature, the seminal contribution of Bloom (2009) studies

a business cycle model in which individual firms face time-varying volatility shocks to

their own productivities. He shows that uncertainty shocks, defined as a shock to the

variance of the idiosyncratic productivity process, generate bust-boom cycles. A rise in

stochastic volatility, in a setting where firms face nonlinear costs of factor adjustment,

deters investment as firms adopt a “wait and see” policy in response to the shock. In

this class of models with exogenous shocks to volatility, the aggregate effects tend to be

short-lived. However, Bachmann et al. (2013) argue that the quick recovery following

the wait-and-see effect is not consistent with U.S. data. In particular, they document

persistent and prolonged dynamics following a rise in their measure of uncertainty. I

5 As stated in The General Theory, Ch. 22, “it might be possible to achieve a recovery without the

elapse of any considerable interval of time [. . . ]. But, in fact, this is not usually the case [. . . ]. It is the

return of confidence, to speak in ordinary language, which is so insusceptible to control in an economy

of individualistic capitalism. This is the aspect of the slump which bankers and business men have been

right in emphasizing...”
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contribute to this literature by developing a tight link between uncertainty at the start of

a recession and the gradualism of the subsequent recovery.

My paper contributes to the literature that examines firm-level uncertainty using mi-

crodata and its aggregate implications by simulating a quantitative model. For example,

Vavra (2014) showed that the real effect of a monetary shock decreases as the average

level of uncertainty across firms increases in a price-setting model with stochastic volatil-

ity in firm-level productivity. Baley and Blanco (2016) adapt a Bayesian approach as in

my paper for a price-setting model and show that the dispersion of firm-level uncertainty

matters for the real effect of a monetary shock. The direction of these studies is also

shared by Ilut and Saijo (2016), who investigate a business cycle amplification mechanism

with ambiguity. My paper differs as it studies the dynamics of capital misallocation due

to time-varying uncertainty.

Orlik and Veldkamp (2014) study an alternative origin of uncertainty fluctuations in

a model of Bayesian learning. Uncertainty is associated with doubt about the true model

of the economy. In particular, they argue that small increases in the awareness of tail

risk is important in driving fluctuations of uncertainty.6 In contrast, the distribution of

outcomes is known to firms in my paper. What is unknown is their own actual realizations

of outcomes.

In recent years, interest in uncertainty and learning over the business cycle has in-

creased.7 For example, Fajgelbaum et al. (2013) show a mechanism by which recessions

increase uncertainty in a model of irreversible investment. Saijo (2014) builds a model

with nominal rigidities and proposes a mechanism for endogenous fluctuations in uncer-

tainty. Both papers analyze fluctuations in the amount of information available to agents.

In recessions, economic activity contracts, and this reduces the flow of information and

increases uncertainty. Neither this feedback nor real and nominal rigidities are necessary

in my model for uncertainty shocks to produce recessions. Furthermore, unlike these

papers, my model has time-varying distribution of firms, which is part of the aggregate

state. Following uncertainty shocks, it delivers endogenous fluctuations in TFP through

changes in the degree of misallocation of capital and labor, leading to a sluggish economic

recovery in the presence of learning.

This work is also related to existing papers that study the role of the allocation of

resources across heterogeneous agents and its impact on aggregate productivity (e.g.,

Restuccia and Rogerson, 2008). Hsieh and Klenow (2009) argue that misallocation of

6 See also Kozlowski, Veldkamp and Venkateswaran (2016).
7 There are papers that examine economic environments wherein agents learn from market outcomes.

For example, Van Nieuwerburgh and Veldkamp (2006) and Caplin and Leahy (1993) study the relation

between the flow of information and economic activity in models without uncertainty shocks.
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resources has a substantial impact on aggregate TFP in India and China. More recently,

the role of financial frictions in generating capital misallocation and its aggregate impli-

cations have been studied in several quantitative environments (Khan and Thomas, 2013;

Buera and Moll, 2013; Buera et al., 2011). Instead of financial frictions, I study the role of

information frictions in causing a loss in aggregate productivity through the misallocation

of resources. David et al. (2013) also study misallocation in a model of learning at the

firm level. However, my paper looks at the implications of misallocation over business

cycles, while they focus on a stationary equilibrium.

I also contribute to the empirical literature on uncertainty. Several proxies have been

developed within the literature, ranging from the volatility of GDP or stock prices to

disagreement and forecast errors in survey data, as uncertainty is difficult to identify. For

example, Leahy and Whited (1996) construct a measure of uncertainty from the volatility

of stock returns for individual firms. Guiso and Parigi (1999) use survey data on demand

forecasts by Italian firms to infer the level of uncertainty facing these individual firms.

Bond et al. (2005) consider several measures including volatility in monthly consensus

earnings forecasts, the variance of forecast errors for consensus forecasts and the dispersion

in earnings forecasts across market analysts. To estimate the impact of uncertainty on

investment, they use panel data and look at the cross-sectional features of firm uncertainty

and the investment behavior of individual firms, rather than the uncertainty distribution’s

cyclical properties as in Bloom et al. (2014), Kehrig (2016) and Vavra (2014). In this

paper, I use data on earnings forecasts by individual analysts as in Bond (2005); however,

I examine not only the average cross-sectional distribution but also the cyclical changes

of this uncertainty measure. Bachmann et al. (2013) use survey data from the IFO

Business Climate Survey, which asks forecasters about their own future prospects rather

than about macroeconomic variables such as GDP, to extensively study various measures

of uncertainty. I also use forecast disagreement to measure uncertainty.

My model builds on Jovanovic’s (1982) learning model, which has been applied to

study a broad range of topics such as the disparate response of heterogeneous firms to

aggregate shocks Li and Weinberg, 2003; Alti, 2003) and the differential sensitivity of

product switching behavior among exporters learning about their demand (Timoshenko,

2013).

The rest of the paper is organized as follows. Section 2 reports empirical results.

In Section 3, the model of heterogeneous firms with learning is developed. Section 4

presents my quantitative results, both stationary equilibrium results matched against a

variety of micro-level moments and the business cycle results in the presence of aggregate

uncertainty. Section 5 concludes.
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2 Empirics

In this section, I first build an annual panel dataset of firms’ ex-ante earnings forecast

dispersion and ex-post forecast errors using data from the I/B/E/S and Compustat. I

then use this panel to construct new empirical measures of firm-level uncertainty. These

new measures reveal persistent differences in the degree of uncertainty facing individual

firms. Consistent with existing measures, these new measures show that the average level

of uncertainty across firms is countercyclical. In particular, there was a sharp rise at the

start of the Great Recession.

2.1 Data

Among many papers that use survey data to measure uncertainty, I follow the literature in

using earnings forecasts to build a proxy for firm-level uncertainty, as in Johnson (2004),

Bond at al. (2005), and Janunts (2010).8

The first data source that I use is the I/B/E/S, which contains a point forecast of

earnings per share (EPS) made by an individual analyst. For each firm at each month, a

researcher can calculate the cross-analyst dispersion of earnings forecasts. The I/B/E/S

also contains actual earnings records.9 By comparing earnings forecasts with the actual

earnings records, one can also calculate forecast errors for each firm at each month.

As the second data source, I use Compustat, from which I take accounting data from

the balance sheet, profit and loss, and cash flow statements. By adding each firm’s

accounting fundamentals data, I can implement a necessary data transformation that

allows me to tightly map earnings forecast data into the model-generated moments. In

particular, by using total assets from Compustat, I transform both earnings forecasts and

records, which are in dollars, into ROA expressed as a percentage.

The result is a panel containing forecast dispersion and forecast errors about ROA for

individual firms. One of the attractive features is that I can elicit both an ex-ante and

ex-post uncertainty measure at the firm-level. Another important attractive feature is

that earnings data coupled with total assets data allows me to use the panel data for my

8 To proxy uncertainty about macroeconomic variables, surveys such as the Survey of Professional

Forecasters (SPF) have been widely used (see, for example, Zarnowitz and Lambros, 1987; Giordani and

Sderlind, 2003; and Rich and Tracy, 2010). For example, Zarnowitz and Lambros (1987) show a positive

relationship between forecast dispersion and uncertainty, while Rich and Tracy (2010) find little evidence

in support of using disagreement to measure uncertainty.
9 Earnings that can be obtained from the I/B/E/S are so-called street earnings, which are different

from earnings that can be obtained from Compustat using the generally accepted accounting principles

(GAAP).
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quantitative analysis. To the best of my knowledge, this paper is the first to achieve a

tight mapping of firm-level uncertainty measures into a quantitative business cycle model

with heterogeneous firms.

These features are distinct among other commonly used measures of firm-level un-

certainty such as realized stock-return volatility or implied volatility.10 For instance,

stock-return volatility may reflect all possible sources of risk rather than the firm’s fun-

damentals, which I intend to isolate in this paper. In addition to earnings forecast data,

I have also used stock returns data from the CRSP database. The construction of uncer-

tainty measures are explained in the next section.

2.2 Firm Uncertainty Panel

For firm i in each month m during year t, I can observe analyst j’s point forecast of EPS

for this current year t, denoted fepsi,j,m,t. Earnings forecasts are transformed into ROA

forecasts, froai,j,m,t, by using data on the number of outstanding shares during year t,

sharenumi,t, and total assets data at the end of the previous year (t− 1), ati,t−1:

froai,j,m,t =
fepsi,j,m,t ∗ sharenumi,t

ati,t−1
. (1)

Then, I define the forecast dispersion-based uncertainty measure, fdispi,m,t, defined

as the coefficient of variation of froai,j,m,t.
11

For firm i in each month m during year t, I can obtain the median forecast among an-

alysts, fmediani,m,t. With the realized ROA, roai,t, I define the forecast error-based

uncertainty measure, ferrori,m,t, as the absolute value difference between roai,t and

fmediani,m,t. If the median ROA forecast is 8 percent and the actual ROA turns out

to be 9 percent, then the forecast error is 1 percent.

So far, these uncertainty measures are monthly based and thus I collapse this monthly

panel to a yearly panel in order to combine it with other yearly-based items, such as sales.

To this end, I focus on forecasts made 8 months before the end of each firm’s accounting

year. This allows me to match the annual model frequency and ensures that I have enough

forecasts as many analysts report their first forecast around this time.12 This results in

10 See, for example, Leahy and Whited (1996) and Bloom, Bond and Van Reenen (2007) for a stock-

returns-based uncertainty measure. Another measure of uncertainty recently used in the literature relies

on options price data as in Stein and Stone (2013).
11 An earning per share (EPS) cross-analyst disagreement measure requires more than one analyst

coverage; thus data with only one forecast is dropped.
12 For example, for a firm with its fiscal year ending at March, the number of forecasts starts to increase

in February and by April it reaches the number close to the final figure. The results are not qualitatively
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fdispi,t and ferrori,t for firm i in year t.

I also use stock return data to construct a measure of realized stock price volatility on

a yearly basis. Specifically, I take daily stock returns data from the Center for Research

in Securities Prices (CRSP) database and calculate the annualized volatility measure of

stock returns.

Linking the Compustat, I/B/E/S and CRSP databases into an annual firm-by-year

panel, the resulting dataset is an unbalanced panel of 46,271 data for 6,453 firms with 8

data points on average, spanning from 1977 to 2014.13 This panel contains uncertainty

measures, performance measures such as ROA and various firm characteristics, including

size, age and analyst coverage. Table 1 reports descriptive statistics of the panel.

2.3 Cross-Sectional Properties: Uncertainty Varies Across Firms

From Table 1, it is evident that there is heterogeneity across firms. For example, firm

size (proxied by sales, total assets and the number of employees), age and performance

(e.g., ROA) exhibit a substantial heterogeneity. Furthermore, the distribution of forecast

dispersion and forecast errors are highly skewed to the right and there is a large variability

across firms. The forecast error for 5th percentile firm is about zero, while that of 95th

percentile firm is more than 11 percent.

Table 2 shows the sample mean of key variables for the subsamples of firms with low

and high uncertainty. Firms with low uncertainty tend to be larger in size (sales, total

assets or the number of employees), to be older and more likely to survive longer and to

have greater analyst coverage (measured by the number of analysts who report forecasts).

Uncertainty varies across not only firms but also time. Figure 1 plots how the distri-

bution of uncertainty measures moved during the Great Recession. In the next section, I

construct time series indexes from firm-level uncertainty measures in this panel data and

show the cyclical properties of these measures.

2.4 Cyclical Properties: Uncertainty Varies Across Time

Using the panel data, I define the following variables for each year t: (1) fdisp meant
as the mean of fdispit; (2) ferror meant as the mean of ferrorit; (3) fdisp sdt as

the standard deviation of fdispit; (4) ferror sdt as the standard deviation of ferrorit;

affected even if I use alternative options to collapse a monthly panel to a yearly panel, either by using a

different month or taking a yearly average.
13 I exclude financial and utilities firms from the sample by dropping firms with Standard Industrial

Classification (SIC) between 4900 and 4999 and then between 6000 and 6999.
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Table 1: Panel: Descriptive Statistics

mean sd p5 p25 p50 p75 p95

Sales 2945.8 7543.4 33.9 185.4 568.8 1913.9 14224.0

Total assets 3152.2 8256.5 50.8 189.1 563.3 1984.0 15444.1

Employment 15.0 51.1 0 1 3 11 62

Age 9.3 7.6 2 4 7 13 26

Life 16.6 10.5 3 8 15 23 38

Analyst coverage 9.3 7.2 2 4 7 13 24

Leverage Ratio 0.216 0.193 0.000 0.041 0.191 0.325 0.580

ROA 0.030 0.111 -0.148 0.010 0.038 0.075 0.161

fdisp 0.193 0.449 0.007 0.027 0.063 0.156 0.769

ferror 0.026 0.049 0.000 0.003 0.009 0.026 0.110

vol 0.432 0.219 0.182 0.275 0.377 0.532 0.873

Note: The table above shows the cross-sectional moments of the firm-by-year panel. The panel

data is constructed by merging data from Compustat, CRSP, and I/B/E/S, resulting in an

unbalanced panel of 6, 453 firms between 1977 and 2014, consisting of 46, 271 firm-year obser-

vations. Sales and total assets are in millions of dollars. Age is the number of years calculated

from the first year of observation. Life is the number of years during which observations can be

found. Analyst coverage is the number of analysts who reported earnings forecasts. ROA is cal-

culated as earnings (= street earnings per share (EPS) multiplied by the number of outstanding

shares) divided by total assets. Forecast dispersion (=fdisp) is the coefficient of variation of

ROA forecasts across analysts. Forecast error (=ferror) is calculated as the absolute value of a

percentage gap between the realized ROA and the median ROA forecast. vol is the annualized

stock returns volatility constructed using daily data. All data are winsorized at the 1 percent

level.
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Table 2: Subsamples: Descriptive Statistics

Low uncertainty High uncertainty

firms firms

mean sd mean sd

Sales 3580.0 8314.9 1069.7 4000.3

Total assets 3815.0 9092.8 1191.4 4484.2

Employment 18.3 58.0 5.0 15.9

Age 10.1 7.9 7.1 5.9

Life 18.4 11.3 7.8 4

Analyst coverage 10.1 7.5 7.2 5.8

Leverage ratio 0.222 0.183 0.198 0.218

Numbers of firms 34581 11690

Note: The table above shows the mean and standard deviation of the subsamples of the firm-

by-year panel. The samples are split into each for firms with low and high uncertainty, being

categorized into each sub-sample whether fdisp is above or below the mean value for the full

sample. Explanations of each variable in the above table can be found in the notes of Table 1.

(5) roa meant as the mean of roait; (6) roa sdt as the standard deviation of roait; (7)

vol meant as the mean of volit; and (8) vol sdt as the standard deviation of volit. Fur-

ther, I take (9) BOSt as the forecast disagreement index from Bachmann et al. (2013). I

also take (10) TFPit as the cross-sectional standard deviation of TFP shocks among U.S.

plants from Bloom et al. (2014).

Table 3 shows a correlation matrix between the uncertainty measures from both my

panel data and other studies together with real GDP series. First, earnings forecast-based

uncertainty measures (fdisp mean, fdisp sd, ferror mean, ferror sd) are negatively

correlated with real GDP series, ranging between -0.528 and 0.043. Second, the corre-

lation between forecast dispersion-based measures (fdisp mean and fdisp sd) and fore-

cast error-based measures (ferror mean and ferror sd) is positive, ranging from 0.038

to 0.468, consistent with Bachmann et al. (2013). Third, earnings forecast-based uncer-

tainty measures are also positively correlated with stock-return-based measures (vol mean

and vol sd) with correlations between −0.028 and 0.604. Finally, earnings forecast-based

uncertainty measures are positively correlated with the TFP dispersion based-measure

(TFP ) developed in Bloom et al. (2014) with correlations between 0.101 and 0.639.

Figure 2 plots time series of some of these variables to highlight the patterns discussed
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here.

To sum up, by merging the I/B/E/S data and the Compustat data, I construct an

annual panel of firms’ ex-ante earnings forecast dispersion among market analysts and

ex-post realized forecast errors. I then document the following stylized facts. First, the

degree of uncertainty facing individual firms is heterogeneous; the level of uncertainty

decreases as firms age and grow. Second, the first and second moments of the firm-level

uncertainty distribution are countercyclical; the correlation with GDP growth rates are

negative. Thus, forecast dispersion and its variance both fall with higher GDP growth.

Finally, my measures of uncertainty are positively correlated with other common measures

in the literature, including stock price volatility-based and balance sheet-based measures.

In the following sections, I explore these cross-sectional and cyclical features of firm-level

uncertainty in a model with Jovanovic’s (1982) learning with uncertainty shocks.
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Table 3: Correlation between uncertainty measures

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) fdisp mean 1

(2) ferror mean 0.276 1

(3) fdisp sd 0.650 0.272 1

(4) ferror sd 0.0382 0.521 0.468 1

(5) roa mean -0.462 -0.311 -0.595 -0.285 1

(6) roa sd -0.366 0.439 -0.0112 0.578 0.0285 1

(7) vol mean -0.0280 0.604 0.334 0.466 -0.514 0.485 1

(8) vol sd 0.0963 0.529 0.351 0.495 -0.675 0.411 0.901 1

(9) BOS -0.170 0.353 -0.152 0.411 0.0135 0.302 0.266 0.356 1

(10) TFP 0.212 0.639 0.101 0.146 -0.0764 0.298 0.360 0.239 0.164 1

(11) GDP -0.528 -0.481 -0.142 0.0436 0.356 0.163 -0.259 -0.322 -0.187 -0.475 1

Note: The above table is a correlation matrix for the measures of uncertainty. fdisp mean and

ferror mean are the cross-sectional mean of fdispit and ferrorit, across firms i for each year t,

respectively. fdisp sd, and ferror sd are the cross-sectional standard deviation of fdispit and

ferrorit, across firms i for each year t, respectively. roa mean is the cross-sectional mean of ROA

across firms for each year t. roa sd is the cross-sectional standard deviation of ROA across firms

for each year t. vol mean is the cross-sectional mean of the annualized stock returns volatility

across firms i for each year t. vol sd is the cross-sectional standard deviation of the annualized

stock returns volatility across firms i for each year t. BOS is the forecast disagreement index

from Bachmann et al. (2013). TFP is the cross-sectional standard deviation of TFP shocks

for the U.S. establishment from Bloom et al. (2014). GDP is the growth rate of the real GDP

series. All indexes are HP-filtered using a smoothing parameter of 100.

3 Model

Below, I take a standard equilibrium business cycle model with heterogeneous firms

and extend it as follows. First, I assume that firms’ idiosyncratic productivity has both

a base and a temporary component, and these two components cannot be observed sepa-

rately. The temporary component is i.i.d. while the base component is persistent and, as

such, relevant for firms’ investment decisions. Firms learn about their base components

over time, by observing their total productivity and updating their beliefs as in Jovanovic

(1982). Second, each firm is subject to exogenous shocks to this base component. In

each period, a firm retains its current base component with probability 1 − π, but loses

the current level and draws a new one with probability π. The new base component is

drawn from a time-invariant distribution and independent of last period’s productivity
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level. Whenever a firm draws a new base component, it must restart the learning process.

Third, I assume that π is time-varying. A rise in uncertainty in this model happens when

π is high, which implies that an unusually large number of firms change their productivity

level and begin the process of learning anew.

3.1 Production, learning

The model economy is perfectly competitive and has an infinite horizon. There are a

large number of competitive firms producing a homogeneous good. Each firm uses capital

stock k, and labor n, via an increasing and concave production function,

y = zεF (k, n), (2)

where F (k, n) = (kαn1−α)ν , with 0 < α < 1 and 0 < ν < 1.

There are two productivity terms in the production function, one aggregate, z, and one

idiosyncratic, ε. z represents an exogenous stochastic total factor productivity common

across all firms: z ∈ {z1, . . . , zNz}, where Pr (z′ = zm | z = zl) ≡ πzlm ≥ 0, and
∑Nz

m=1 π
z
lm =

1 for each l = 1, . . . , Nz. For the firm-specific idiosyncratic counterpart, I assume that ε

is the sum of two components: a persistent one, θ, and a transitory one, a;

ε = θ + a. (3)

The base component of firm specific productivity, θ, changes infrequently and the

timing of such changes, though not their value, is known to the firm. As noted above,

with probability 1 − π, the current base component is maintained. With probability π,

the current base component is lost and a new value is drawn. This is independent of the

firm’s state. The transitory component, a, is independently and identically distributed

over time. The distribution of both θ and a are known to all firms: θ ∼ N(θ, σ2
θ) and

a ∼ N(0, σ2
ε).

Firms observe ε, but θ and a are not observed separately. Firms can extract infor-

mation about their θ by accumulating observations of ε. While these observations are

affected by the i.i.d. draws of a every period, repeatedly observing ε, firms learn about

their θ.

We formalize this learning process as follows. Consider a firm with ε —the mean

of the observations of idiosyncratic shocks εi for i = 1, . . . , t, where t is the number of

observations. To form a belief about their base component θ, (ε, t) is sufficient information.

Therefore, a firm with (ε, t) infers the posterior distribution: θ ∼ N(A,B) with
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A =
σ2
a

σ2
a + tσ2

θ

θ +
tσ2
θ

σ2
a + tσ2

θ

ε (4)

B =
σ2
aσ

2
θ

σ2
a + tσ2

θ

(5)

where ε = (
∑t

i=1 εi=1)/t and t is the number of observations. Each period after observing

ε, the posterior distribution of θ is updated, and over time it converges to the true value

of θ as t becomes large enough.

3.2 Distribution of firms

The exogenous aggregate state is summarized by s = (z, π). In addition, a non-trivial,

time-varying distribution of firms is a part of the aggregate state. As shown in the last

section, firms form expectations over their productivity next period. Starting with the last

period when their base component is reset, firms observe their productivity over time, and

the mean of these observations and the number of observations are a part of each firm’s

state. This number of observations corresponds to the time-since-reset. Thus, firms at the

beginning of each period are identified by the mean of their observations of idiosyncratic

shocks, ε, the number of these observations, t, and their current productivity draw, ε,

alongside their predetermined capital stock, k. I summarize the distribution of firms over

(ε, t, ε, k) using the probability measure µ defined on the Borel algebra, S, generated by

the open subsets of the product space, S= R+×Z× R+×R+.

Given the distribution of firms, the aggregate state of the economy is fully summarized

by (s, µ), and the distribution of firms evolves over time according to a mapping, Γ, from

the current aggregate state; µ′ = Γ(s, µ).

3.3 Firm’s problem

Firms solve the following problem given their firm-level state together with the aggregate

state. The problem consists of choosing the capital stock for the following period, k′, and

the labor input for current period, n. Let V (ε, t, ε, k; s, µ) be the value function of a firm,

15



V (ε, t, ε, k; s, µ) = max
n,k′

[
zε(kαn1−α)ν − ωn+ (1− δ)k − k′

+(1− π)Es′|sd (s′, s, µ)Eε′|ε,tV (ε′, t+ 1, ε′, k′; s′, µ′)

+πEs′|sd (s′, s, µ)Eε′V (ε′, 1, ε′, k′; s′, µ′)
]

(6)

subject to : ε′ =
tε+ ε′

t+ 1
, (7)

and : µ′ = Γ(s, µ). (8)

Each firm’s profits are its output less wage payments and investment. With probability

1 − π, the current base component is maintained and hence their expectation over ε′

and thus ε′ are conditional on (ε, t). Furthermore, they discount next period’s value

by the state contingent discount factor, d (s′, s, µ) . With probability π, the current base

component is lost and a new one is drawn, independent of the current state. In the first

period after any reset of the base component, firms take an average of the mean value of θ

and the first draw of ε′. The state contingent discount factor is determined by households

decision rules as explained below.

3.4 Households

There is a large number of identical households in this economy, formally a unit

measure. Households choose consumption, supply labor, and hold their wealth in firm

shares to maximize lifetime expected utility as follows.
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V h (λ; s, µ) = max
c,nh,λ′

[
U
(
c, 1− nh

)
+ βEs′|sV

h (λ′; s′, µ′)
]

(9)

subject to: c+

∫
S

ρ1

(
ε
′
, t+ 1, ε′, k′; s, µ

)
λ′
(
d
[
ε
′ × t+ 1× ε′ × k′

])
≤

w (s, µ)nh +

∫
S

ρ0 (ε, t, ε, k; s, µ)λ (d [ε× t× ε× k]) (10)

: µ′ = Γ(s, µ) (11)

Households hold one-period shares in firms, which is denoted by the measure λ.

Given the prices—the real wage, w (s, µ), and the prices of shares, ρ0 (ε, t, ε, k; s, µ) and

ρ1
(
ε
′
, t+ 1, ε′, k′; s, µ

)
, households choose their current consumption, c, hours worked, nh,

and the numbers of new shares, λ′
(
ε
′ × t+ 1× ε′ × k′

)
.

Let Ch (λ; s, µ) andNh (λ; s, µ) represent the household decision rules for consumption,

hours worked, and let Λh (ε′, t+ 1, ε′, k′, λ; s, µ) be the household decision rule for shares

purchased in firms that will begin the next period with (ε
′
, t+ 1, ε′, k′).

3.5 Recursive equilibrium

A recursive competitive equilibrium is a set of functions

prices : (ω, d, ρ0, ρ1)

quantities : (N,K,C,Nh,Λh)

values : (V, V h)

that solve firm and household problems and clear the markets for assets, labor, and output:

1. V satisfies (6) - (8), and (N,K) are the associated policy functions for firms.

2. V h satisfies (9) - (11), and (C,Nh,Λh) are the associated policy functions for house-

holds.

3. Λh (ε, t, ε, k, µ; s, µ) = µ (ε, t, ε, k) for each (ε, t, ε, k) ∈ S.
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4. The labor and goods market clear.

Nh(µ; s, µ) =

∫
S

[N(ε, t, ε, k)] · µ(d[ε× t× ε× k])

C(µ; s, µ) =

∫
S

[zεF (k,N(ε, t, ε, k))− (K(k, b, ε; z, µ)− (1− δ)k)] · µ(d[ε× t× ε× k])

5. the resulting individual decision rules for firms and households are consistent with

the aggregate law of motion, Γ, where Γ defines the mapping from µ to µ′.

Using C(s, µ) and N(s, µ) to describe the market-clearing values of household

consumption and hours worked, it is straightforward to show that market-clearing requires

that (a) the real wage equal the household marginal rate of substitution between leisure

and consumption:

w (s, µ) = D2U
(
C(s, µ), 1−N(s, µ)

)
/D1U

(
C(s, µ), 1−N(s, µ)

)
,

that (b) firms’ state-contingent discount factors are consistent with the household marginal

rate of substitution between consumption across states:

d (s′, s, µ) = βD1U
(
C(s′, µ′), 1−N(s′, µ′)

)
/D1U

(
C(s, µ), 1−N(s, µ)

)
.

4 Quantitative Analysis

In this section, I present my calibration strategy to match both micro and macro data. I

set the length of a period for this model to 1 year and solve the model using a non-linear

method, which involves value function iterations over the state space described in the

model section. In this paper, there is a non-trivial time-varying distribution of firms,

which is a part of the aggregate state in this economy. I take the Krusell Smith (1997)

approach that is implemented by Khan and Thomas (2003, 2008) in a heterogeneous firm

model.14

14 Terry (2014) compares a variety of alternative approaches to solve heterogeneous firm models with

aggregate uncertainty.
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4.1 Steady State and Calibration

Functional forms and stochastic processes

I assume that the representative household’s period utility is u(c, L) = log c + ηL, as in

models of indivisible labor (e.g., Hansen, 1985; Rogerson, 1988). As seen in the previous

sections, I assume that each heterogeneous firm undertakes production via the Cobb-

Douglas production function: zε(kαn1−α)ν , where α determines capital and labor’s share

of income and ν governs returns to scale in this economy. For aggregate and idiosyncratic

productivity processes: z and ε = θ + a, I assume

log z′ = ρz log z + η′z with η′z ∼ N
(
0, σ2

ηz

)
and (12)

ε = θ + a

: θ ∼ N(θ, σ2
θ) and

: a ∼ N(0, σ2
a). (13)

θ is the mean, and σ2
θ is the variance of the base component of idiosyncratic produc-

tivity, and σ2
a is the variance of the temporary component of idiosyncratic productivity.15

For time-varying π, I assume that π follows a two-state Markov chain with πL and πH .

The transition matrix is Π =

[
ρL 1− ρL
1− ρH ρH

]
.

Common parameters

I calibrate the following five parameters against aggregate moments for the U.S. economy:

(1) 1 − α: labor’s income share, (2) ν: returns to scale, (3) β: the household discount

factor, (4) δ: the depreciation rate and (5) η: the leisure preference. First, I set ν to imply

an average private capital-to-output ratio of 2.3, given the value of 1−α determining the

average labor share of income at 0.6 (Cooley and Prescott, 1995). Next, the depreciation

rate, δ, is taken so that the model matches an average investment-to-capital ratio at 0.07.

The preference parameter, η, is set to imply an average hours worked of one-third. Finally,

I set the household discount factor to match an average real interest rate of 4 percent as

in Gomme, Ravikumar and Rupert (2011).16

15 I discretize these productivity processes and ensure all grid values are positive in calibrated version

of the model.
16 The average private capital-to-output ratio and the average investment-to-capital ratio are calculated

from the U.S. National Income and Product Accounts Tables and Fixed Assets Accounts Tables for

postwar periods as in Khan and Thomas (2013).
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Firm-level parameters and aggregate shocks

Given the common parameters calibrated as above, I jointly calibrate the following firm-

level parameters and then set the parameters that govern exogenous aggregate shock

processes. First, (1) the mean of base components of idiosyncratic productivity, θ, (2)

the variance of base components of idiosyncratic productivity, σ2
θ , (3) the variance of

temporary components of idiosyncratic productivity, σ2
a, and (4) the steady-state level of

the reset probability, πL, are calibrated to match the following moments from my panel.

First, I aim to obtain the moments relating to ROA consistent with the empirical data,

particularly the cross-sectional moments regarding the actual ROA and ROA forecast er-

rors, defined as the percentage difference between the actual ROA and the conditional

expectation made in the previous period. The left top panel of Figure 3 shows the distri-

bution of ROA and the left bottom panel of Figure 3 shows forecast errors about ROA

from the model-simulated data. The model captures the cross-sectional moments of ROA

well. As in the data, the distribution of ROA is skewed to the left with the mean (model:

0.29, data: 0.30) and standard deviation (model: 0.095, data: 0.111). In addition to these

actual ROA moments, the model is also able to match with the moments of forecast errors

about ROA. Consistent with the data, the distribution is skewed to the right with the

mean (model: 0.028, data: 0.026), standard deviation (model: 0.034, data: 0.049) and

interquartile range (model: 0.023, data: 0.025).

Second, as becomes clear later, the distribution of investment rates has an important

implication for the aggregate results of the model; thus, I intend to achieve a tight cor-

respondence between the model and the data. In particular, the fraction of firms that

undertake negative investment is matched with the data (model: 0.102, data: 0.161).17

Third, I calibrate the process for the two aggregate shocks as follows. I set the high

reset probability, πH , to reproduce the size of changes in the cross-sectional average of

forecast errors between low- to high-uncertainty periods in the panel data (38%).18 The

transition probabilities are estimated to match the transition patterns between low- to

high-uncertainty periods during the same years in the panel data. Finally, the stochastic

process of aggregate productivity is calibrated by setting ρz to 0.909 and σηz to 0.014 as

in Khan and Thomas (2013). All parameters are summarized in Table 4.

17 I obtain the fraction of firms with negative investment using the measurement of investment as

capital expenditure net of retirement from the Compustat data. Cooper and Haltiwanger (2006) report

the fraction of observations with negative investment is 10.4 percent. While the former covers listed firms,

the latter covers U.S. plants. Coverage of both factors does not extend recent years as data on retirement

is not available; I err on the side of safety rather than overstating negative investment in the model.
18 Low-uncertainty periods correspond to years of ferror mean below the average over the sample

periods, and high-uncertainty periods correspond to years of ferror mean above the sample average.
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Table 4: Parameter values

ν α δ β η φ σ2
θ σ2

a πL πH ρL ρH ρz σz

0.80 0.25 0.069 0.96 2.0 0.081 0.195 0.0515 0.12 0.45 0.86 0.50 0.904 0.014

4.1.1 Untargeted Moments

The model predicts that forecast errors become smaller as learning proceeds. Forecast

errors involve intrinsic errors due to σa, which is independent of learning. On the contrary,

as firms become better informed as learning proceeds, the distance between the true value

of θ and the conditional expectation E[θ|(ε, t)] diminishes. This leads to the negative

relationship between forecast errors and time-since-reset (TSR), defined as the number

of periods elapsed since the last change of θ. This can be seen in Figure 4, which plots

forecast errors from the data generated by the simulation. The right panel of Figure 4

shows the negative relationship between forecast errors and TSR. Further, the left panel of

Figure 4 shows the negative relationship between forecast errors and firm size, measured

by total assets. This negative relationship is due to the fact that the capital choice is

convex in estimates of productivity due to decreasing returns to scale technology. As

learning proceeds, capital accumulation by firms that revise their estimate upward is

larger than capital deccumulation by firms that revise their estimate downward. Thus, as

TSR increases, the cross-sectional average of capital stock increases, as in Figure 5.

Figure 6 compares the model against the data. The left panel of Figure 6 plots the

mean of forecast errors and the right panel of Figure 6 plots the standard deviation of

forecast errors against TSR from the model and firm age from the data. As Figure 6

shows, the model captures well the features of the negative relationship in the mean

of forecast errors against learning duration, although the model overall understates the

standard deviation.19

4.1.2 Two-Sided Capital Misallocation

Imperfect information about total factor productivity across firms causes a misallocation

of capital and labor. Firms operating with imperfect information deviate from the optimal

allocation of resources and exhibit both over- as well as undercapacity. This pattern of

misallocation is distinct from that which appears with financial frictions such as lending

19 Note, though, that learning duration in the model corresponds to TSR but in data corresponds to

firm age, measured by the number of periods appearing in the data.
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subject to default risk (e.g. Khan et al., 2014) or a collateral constraint (e.g. Buera and

Moll, 2013).

When a firm believes its base productivity is higher (lower) than the prior, its capital

stock tends to be lower (higher) than the efficient level based on full information. This

undercapacity (overcapacity) persists over time until the posterior mean converges to

the true base productivity. Overall, unless firms are fully informed about their base

components, their capital stock is either excessive or insufficient relative to the efficient

level consistent with the true value of its base component and the interest rate. The

longer it takes a firm to learn, the more severe the resource misallocation problem.

Figure 7 provides an example of learning and capital accumulation patterns from one

individual firm. The top panel shows the idiosyncratic productivity, which is the sum

of the true base component and the i.i.d. component. The middle panel shows the

uncertainty proxies: the forecast errors and the posterior variance of forecasts of the base

productivity. The bottom panel plots the capital stock chosen by the firm and compares

it with the frictionless capital stock choice for this firm.

In this example, the firm experiences a resetting of its base productivity twice, at

period 7 and at period 12. Following these resettings, the posterior variance of forecast of

the base productivity jumps and then gradually decreases again as learning proceeds. In

the early period of learning, not only the posterior variance but also the forecast errors

tend to be large. Furthermore, the capital stock tends to deviate from the frictionless

levels. For example, the firm gradually scales up its capital stock following a rise in its

base productivity at period 7. Over this period, its capital stock is inefficiently low. In

contrast, the firm maintains its capital stock above its frictionless level for a while after

period 14. From period 14, the firm’s observation of productivity is higher than the base

level due to the i.i.d. components; however, because the firm is in the early stage of learn-

ing, it incorporates these i.i.d. components into their posterior belief, thus choosing its

capital stock at the higher level relative to the frictionless level. As such, every time base

components are reset and there is a change in base productivity, firms adjust their capital

stocks slowly and a misallocation of capital persists. The time-varying reset probabilities

have important cyclical implications as they change the degree of misallocation of capital

and labor. In the next section, we explore dynamic implications in this environment.

4.2 Business Cycles

Table 5 presents the business cycle moments for a 2,500-period unconditional simulation

with both aggregate productivity shocks and uncertainty shocks. Some of the features

of the model business cycle are summarized as follows. Most second-moment statistics
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Table 5: Unconditional business cycle moments

Y C I N K

Mean 0.591 0.502 0.090 0.330 1.299

Standard deviation relative to Y 1.000 0.460 5.112 0.710 0.569

Correlation with Y 1.000 0.769 0.932 0.910 0.122

Note: The table above presents business cycle moments from a 2,500-period unconditional

simulation. All series are HP-filtered in logs with a smoothing parameter of 100. The first row

reports the standard deviation of the HP-filtered log series. The second row reports the relative

size of the standard deviation of the HP-filtered log series to the standard deviation of the output

series. The third row reports the contemporaneous correlation with the output series.

generated from the simulation are standard and familiar when evaluated against the

business cycle literature. Specifically, consumption, investment and hours co-move with

output. Consumption is less volatile than output, while investment is more volatile than

output and, indeed more than its empirical counterpart.

4.2.1 The Great Recession Simulation

In this section, I explore the mechanism that propagates uncertainty shocks in the model.

To accomplish this, I study an impulse response following an uncertainty shock, which

involves a rise in the reset probability π. The size of the shock is set to reproduce the

observed increase in the cross-sectional average of forecast errors, ferror meant, during

the Great Recession. Specifically, I set π to 0.35 for four periods so that the model repro-

duces that the average size of forecast errors rises by 31% from the average between 2005

and 2006 to the average between 2008 and 2009. In figure 9, I show the model economy’s

response for two cases: the benchmark model with imperfect information (learning model)

and a model without imperfect information (no learning model). The second model has

an observable base component and is otherwise identical to the benchmark. The solid line

is the response of the benchmark model to the uncertainty shock. The dashed line is the

response of the no learning model to the uncertainty shock. For the benchmark model, the

uncertainty shock alone reduces measured TFP by 0.73%, which is 33% of the observed

reduction, and GDP by 1.55%, which 28% of the observed reduction. Investment falls by

5.89%, which is 31% when compared to the data.20

20 In the data, the size of the recession is measured by the percentage change in each variable from the

peak to the trough, 2007Q4 to 2009Q2.
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In the following sections, I further investigate how uncertainty shocks produce reces-

sions in the model. I first explain the difference between the mechanism through which

conventional uncertainty shocks in stochastic volatility models operate and the distinct

mechanism in my model. I then focus on the role of learning in shaping aggregate fluctu-

ations by comparing the model responses with learning and without learning. This will

reveal an important mechanism through which the process of learning prolongs recessions

in the model.

Relationship with Conventional Uncertainty Shocks

The conventional framework used in business cycle studies of uncertainty shocks assumes

stochastic volatility where the variance of a stochastic processes is allowed to be time-

varying. Bloom (2009), for example, introduces shocks to both the level of productivity

and its variance.21 In stochastic volatility models, a shock to the variance can lead to a

recession. One mechanism that has been emphasized by the literature is the real option

value associated with factor adjustment in the presence of nonlinear adjustment costs.

For any given firm, there are two effects that work in opposite directions following

a shock to the variance of productivity. On the one hand, the firm might increase its

investment due to Jensen’s inequality effects (Oi-Hartman-Abel effects).22 This is be-

cause the optimal choice of capital is convex in productivity. On the other hand, the

firm might pause its investment completely and wait for the resolution of uncertainty.

With more volatile productivity shocks, the value of an option to wait to see future

outcomes in the following period increases. Therefore, the firm may undertake no invest-

ment. In economies with heterogeneous firms, some firms pause investment while other

firms increase investment, depending on their levels of individual productivity. Quanti-

tative studies in the literature have shown that the latter effect dominates and due to

this extensive driven-mechanism the aggregate economy falls into recession with higher

uncertainty.

21 See, for example, Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez and Uribe (2011), Basu

and Bundick (2012), Arellano, Bai and Kehoe (2012), Gilchrist, Sim and Zakrajsek (2014), Christiano,

Motto, Rostagno (2014) and Schaal (2015), Born and Pfeifer (2014) and Fernndez-Villaverde, Guerrn-

Quintana, Kuester and Rubio-Ramrez (2015), among others.
22 The positive impact of uncertainty shocks on investment is known as the Oi-Hartman-Abel effect

(Oi, 1961; Hartman, 1972; Abel, 1983).
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Recessions with Bayesian Uncertainty Shocks

In contrast to the extensive margin-driven mechanism with conventional uncertainty

shocks, Bayesian uncertainty shocks in this paper operate through an intensive margin.

Uncertainty shocks lead to more churning of firm productivity, while the distribu-

tion of firm productivity remains unchanged. Each firm anticipates a higher likelihood

of changing its productivity. The changes in the conditional expectation of next period

productivity vary its size and sign across firms, depending on the current location on

the productivity distribution. For firms with a posterior mean of productivity higher

than the prior mean productivity, a higher probability of changing productivity implies

a downward shift in the conditional expectation, putting more weight on the uncondi-

tional prior distribution instead of on the conditional posterior distribution. For firms

with a posterior mean of productivity lower than the prior mean productivity, a higher

probability of changing productivity implies an upward shift in the conditional expecta-

tion. Furthermore, the larger the distance between the conditional posterior mean and

the unconditional prior mean, the larger the shift in the conditional expectation after the

shock. However, all these effects on the expectation offset each other as the distribution of

productivity is symmetrical. Therefore, there is no expectation shift in the first moment

of productivity from the aggregate perspective.

Even though these changes in expectation offset each other in the aggregate, each firm

undertakes capital stock adjustments based on the newly revised conditional expectation.

Importantly, these capital stock adjustments do not offset each other across firms due

to decreasing returns to scale technologies; thus, the real effect emerges in the aggregate

from these capital stock adjustments following Bayesian uncertainty shocks.

Figure 8 demonstrates these disparate responses in the capital stock adjustment across

firms. Firms take expectations about their future productivity levels by looking at two

different distributions of productivity simultaneously: one is their own posterior distribu-

tion that has been updated by learning, and the other is the unconditional distribution,

which is the common prior known to all firms. Facing a higher reset probability, firms

put more weight on the unconditional distribution than their posterior distribution. Since

the variance of the unconditional distribution is larger than that of the posterior, firms

effectively infer a larger variance of their future productivity distribution.

The direction of the shift in the posterior mean depends on the current posterior

mean. For a firm with a current posterior that is higher than the prior mean, a higher

reset probability leads to a larger variance of productivity shocks and a fall in its mean.

This leads the firm to scale down its capital stock, as seen in the right panel of Figure

8. In contrast, for a firm whose current posterior is lower than the prior mean, a higher
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reset probability results in a larger variance of productivity shocks with an upward shift

in the mean, inducing it to increase its capital stock, as seen in the left panel of Figure 8.

Nonetheless, these two effects do not offset each other due to the fact that the produc-

tion function exhibits decreasing returns to scale. Given that the productivity distribution

of firms is symmetrical around its mean, the net impact on aggregate investment is neg-

ative, and the economy enters a recession despite the absence of adjustment costs.

4.2.2 The Role of Learning

In Figure 9, I show how the two models with and without learning shape the recovery pat-

terns of the economy after recessionary periods. While investment, labor, and measured

TFP series overshoot in the model without learning, the benchmark model with learning

eliminates this rapid recovery. Instead, the benchmark model with learning exhibits a

gradual recovery following a recession.

To gauge the importance of imperfect information following uncertainty shocks, I

decompose the impact of uncertainty shocks into the two effects explained below. I first

categorize firms into cohorts by their time-since-reset (TSR), and I look at the average

investment for each cohort. This allows me to see the disaggregated investment response of

firms. Furthermore, by comparing the mass of firms for each cohort, I can trace changes in

the distribution of firms throughout the recession. This will prove useful for understanding

the mechanism behind the rapid drops and slow recoveries in my model. Figure 10 shows

this exercise for the beginning of the recession and the recovery separately.

4.2.3 The Onset of a Recession

When firms anticipate a higher reset probability for their base components of productivity,

an uncertainty effect leads them to change their target levels of capital. As argued above,

for firms whose current posterior is higher than the prior mean, the higher reset probability

implies a larger variance for productivity shocks and fall in their mean, leading to a

downward adjustment of capital stocks. On the other hand, for firms whose current

posterior mean is lower than the prior, uncertainty shocks imply a larger variance of

productivity shocks with an upward shift in the mean, resulting in an upward adjustment

of capital stocks. Given that the distribution of the base component of productivity is

symmetric and the production function has decreasing returns to scale, the downward

adjustment of capital stocks for the top 50% of firms tends to dominate the opposing

force from the bottom 50% of firms. Thus, investment falls for cohorts 6 to 20, as shown
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in the top left panel of Figure 10. This shifts the average investment curve from the solid

to the dashed line.23

The top right panel of Figure 10 highlights the distributional effects. While uncertainty

effects are now less pronounced and investment has largely reversed, there is a large inflow

of firms into cohort 1 relative to the pre-recession level. Since the average investment level

of cohort 1 is the lowest among all cohorts, this shift of the firm distribution leads to a

substantial drop in aggregate investment.

4.2.4 A Slow Recovery

In this subsection, I examine how imperfect information eliminates an overshoot of in-

vestment. After the shock ends, firms raise their expectation of maintaining their current

level of productivity. Now, if firms believe that their base component is higher than the

mean, they are more confident in raising their scale of production. If firms believe that

their base component is lower than the mean, they reduce their scale of production. For

the reasons in the previous subsection, the pent-up demand of firms with higher produc-

tivity shifts the average investment curve from the dashed to the solid line, as seen in the

bottom left of Figure 10.

As may be seen in there, this pent-up investment demand effect is strong in cohorts

with large time-since-reset. While this potentially increases aggregate investment, the

mass of firms in the relevant cohorts (3 and onward) is small compared to the pre-recession

level; therefore, aggregate investment will not recover. Furthermore, despite the end of

uncertainty shocks, the level of investment for cohorts 1 and 2 remain low due to a general

equilibrium effect.24 This also prevents a sudden recovery in aggregate investment after

the shock ends.

Imperfect information not only eliminates an overshooting of investment but also slows

the pace of recovery afterwards. The bottom right panel of Figure 10 explains how the

model economy slowly recovers to its pre-recession level in the periods after the uncertainty

shock. The key mechanism is misallocation. To achieve an efficient level of capital stock,

firms need to have accurate information about their productivity. Thus, misallocation of

capital and labor is more severe among cohorts with a smaller time-since-reset. As the

figure shows, the mass of firms within cohorts 2 and 3 is larger than in the steady-state,

23 This is easier to see in the top left panel of Figure 12, in which each line represents the percent

change in investment from the steady state. The rise in the average investment in cohorts 1 to 4 is a

general equilibrium effect. As shown in the top left panel of Figure 11, these rises are not present in

partial equilibrium.
24 See Figure 11 for the case in which investment increases for all cohorts in partial equilibrium.
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while the mass of firms in cohort 4 and onward is smaller than before the recession. As

time goes by, the mass of firms in cohorts 2 and 3 will gradually fill up the gap in the size

of mass in cohort 5 and onward. Due to a slow-moving distribution of firms related to

learning, the negative aggregate effect from misallocation persists until the distribution

of information in the economy eventually returns to match that in the steady state.

5 Conclusion

This paper develops a heterogeneous firm model that incorporates Bayesian learning at

the firm level with uncertainty shocks. The model can capture the cross-sectional and

cyclical features of firm-level uncertainty well. In the model, uncertainty will be resolved

gradually as firms operate longer and get better informed. Thus, it can replicate the

negative relationship between the duration of operations and the size of forecast errors,

consistent with data. Further, the model establishes a close link between the rise in firms’

uncertainty at the start of a recession and the slow pace of subsequent recovery.

The approach taken in this paper to modeling uncertainty may be useful in other

applications. For example, while this model has a very simple hiring and firing decision,

economists have emphasized jobless recoveries and the mechanism proposed in this paper

may offer important insights that link these to a rise in firms’ uncertainty. Further, there

have been attempts to link financial markets and aggregate fluctuations since the recent

financial crisis. As stated by Bernanke (2008), “The crisis we face in the financial markets

has many novel aspects, [. . . ] at the root of the problem is a loss of confidence by investors

and the public in the strength of key financial institutions and markets.” Researchers

may find it useful to examine model environments with type of time-varying uncertainty

proposed here so as to study the link between a deterioration of trust in financial markets

and recessions.

Furthermore, the way I discipline my model with learning via firm-level forecast errors

may be useful in other exercises. Uncertainty cannot be observed directly and this makes

it harder to render the quantitative analysis of such models using microdata. However,

as shown in this paper, the model can be pin-downed by the time dependant features

of measures of uncertainty such as forecast errors. Nonetheless, forecast errors that are

constructed in this paper are still indirect as they reflect market views rather than man-

ager’s view. In this regard, more direct measurement of firm-level uncertainty can be

explored more. Using forecasts by firm managers about future outcomes such as sales

and product prices, we will be able to compare various measures of firm uncertainty more

comprehensively, which is a fruitful area of studies of firm-level uncertainty going forward.
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Figure 1: The Great Recession
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Note: The top panel plots the distributions of fdisp across firms in 2007 (dashed line, red),

2008 (solid line, black) and 2009 (solid line, blue). The bottom panel plots the distributions

of ferror across firms in 2007 (dashed line, red), 2008 (solid line, black) and 2009 (solid line,

blue).
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Figure 2: Historical series
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Note: The top left panel shows the mean of forecast dispersion (solid line, red). The top right

panel shows the standard deviation of forecast dispersion (solid line, red). The bottom left panel

shows the mean of forecast errors (solid line, red). The bottom right panel shows the standard

deviation of forecast errors (solid line, red). In all panels, HP-filtered real GDP series are plotted

(dashed line, black).
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Figure 3: Return on assets, forecast errors and investment rate

The upper left panel shows the distribution of return on assets (ROA), defined as a net profit

divided by capital stock at the beginning of the period. The bottom left panel shows the dis-

tribution of forecast errors, which are defined as the percentage difference between the realized

ROA and the conditional expectation of ROA made in the previous period. For ROA, moments

of the distribution includes: mean (0.029) and standard deviation (0.095). For forecast errors,

moments of the distribution includes: mean (0.028) and standard deviation (0.034). The right

panel plots the distribution of investment rates. Moments of the distribution includes: mean

(0.117), standard deviation (0.414), serial correlation (-0.012) and the fraction of negative in-

vestments (0.102). All data are generated from a simulation of 5,000 firms in the calibrated

model, which was described in the text.
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Figure 4: Forecast errors decrease as learning proceeds

Note: The above plots show two scatter figures of forecast errors: one against capital stock in

the left panel and one against time-since-reset in the right panel. Forecast errors are winsorized

at one percent levels.
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Figure 5: Capital choice

Note: The figure shows the average capital stock choice by TSR. All values are normalized by

the initial level with TSR equal to 1.
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Figure 6: Forecast errors and learning: Model and data

Note: The above figure shows the mean of forecast errors in the right panel and standard

deviation of forecast errors in the left panel. In both panels, the dots represent the moment

from the simulated model, and the lines represent the empirical moment obtained from the

panel. Forecast errors are winsorized at one percent levels.
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Figure 7: Learning cycles from simulation

Note: This figure plots the patterns of the behavior of firms in the simulation without aggregate

shocks. Five thousand firms are simulated for 5,000 periods, and a 20-period simulation result

for one firm is taken here. The top panel shows a series of firm productivity (solid-line), which

is observed by the firm, the sum of its base component, θ, and the i.i.d. component, a. The dot-

line plots θ. The middle panel shows a series of forecast errors (solid-line) and the conditional

variance of forecasts of productivity (dashed-line). The bottom panel shows a series of capital

stocks (solid-line). The dashed-line corresponds to the frictionless level of capital stock in the

absence of information frictions.
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Figure 8: Disparate reactions to uncertainty shocks

41



Figure 9: Uncertainty shock simulations with/without imperfect information

Note: Each panel except the lower right panel plots the aggregate economy’s responses to

uncertainty shocks. A solid blue line plots the responses of a model with learning, and a dashed

red line plots the responses of a model without learning. The uncertainty shock is plotted in

the lower right panel.
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Figure 10: Dynamics of firm distribution and investment following uncertainty shocks:

Benchmark case

Note: Each bin represents the mass of firms in each cohort grouped by the time-since-reset

(TSR) of their base component (left axis). A larger TSR implies that firms are more informed

about their productivity levels. Each line plots the average level of investment for each cohort

(right axis). Each dot shows the steady-state mass of firms in each time-since-reset bin.
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Figure 11: Dynamics of firm distribution and investment following uncertainty shocks:

Partial equilibrium

Note: Each bin represents the mass of firms in each cohort grouped by the time-since-reset

(TSR) of their base component (left axis). A larger TSR implies that firms are more informed

about their productivity levels. Each line plots the average level of investment for each cohort

(right axis). Each dot shows the steady-state mass of firms in each time-since-reset bin.

44



Figure 12: Dynamics of firm distribution and investment following uncertainty shocks:

Percentage change from the steady state

Note: Each bin represents the mass of firms in each cohort grouped by the time-since-reset

(TSR) of their base component (left axis). A larger TSR implies that firms are more informed

about their productivity levels. Each line plots the average level of investment for each cohort

(right axis). Each dot shows the steady-state mass of firms in each time-since-reset bin.
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