Online Appendix

A Analytical Results

A.1 Proof Lemma 1

Each firm 7 chooses next period capital k;;.; one period in advance. Idiosyncratic pro-
ductivity follows

Ingi1 =&t + €ipg1, (23)

where &, ~ N(0,07) is observed at time ¢; €;,41 ~ N(0,07) is realized at the start of t + 1;
and & 4, €;+ are independent across both time and firms and mutually independent. There is
no aggregate shock.

The firm’s objective at time t is to maximize its present discounted expected future profits

by choosing an investment plan {i;;}52:

o0]
1 o i . .
Et(;) m(€i,t+jki,t+j_%,t+j)) s.t. ki,t+j+1 = (1—5)kz',j+t+li,t+j> given k4, (24)

where r is the interest rate faced by the firm and ¢ is the depreciation rate of capital.

The first-order condition for k; ;44 is
OéEt (5i,t+1)k‘3t__4_11 =74+ (5 (25)

Solving (25) for k; ;41 and taking logs yields

1 1 r—+a0
Inkigsr = 7 In By(eien) — 7—In ( - ) (26)

Given the log-normal structure,

E(i44+1) = exp (5¢,t + %U?>- (27)



Substituting into (26) gives

1 ) 1
Inkie1 = A+ B&y, A= <% 52 —In s >> B:= : (28)

Hence Ink; ;1 ~ N(A, B*0¢) with

E(lnk) = A, Var(In k) = (29)

We have Ine = £+ € and Ink = A+ BE. Because (&, €) is jointly normal and In k is affine

in &, (Ine,Ink) is bivariate normal. Their covariance is

o
Cov(lne,Ink) = BVar(¢) = - - o (30)
Output y = ek implies
Iny=Ine +alnk. (31)
Thus Iny is normal with mean
py = E(lny) = E(lne) + aE(Ink) = 107 + aA, (32)
and variance
o, := Var(Iny) = Var(lne) + o*Var(In k) + 2aCov(Ine, In k) (33)
o? o2
2 2 2 3
=(0€+05)+Oz(1_a)2+2041_& (34)
2
_ 2 O¢
_U€+(1—a)2 (35)
Equations (32)—(35) complete the proof of Lemma 1. |

A.2 Proof of Proposition 1

Let Y = 32V g with y; i.i.d. ~ LN (s, o7) as in Lemma 1. Because the first two moments
of a log-normal variable are available in closed form and the {y;}}, are independent across

firms, we obtain F(Y') and Var(Y) exactly by (i) linearity of expectation and (ii) the fact



that all cross-firm covariances vanish.?> We now report these exact moments.

For y; ~ LN (,07),
E(y;) = e“y+0§/2, Var(y;) = (e“5 — 1)62"“”5. (36)

Independence implies

Var(Y) = M (e — 1) e*+os, (38)

Hence the (exact) coefficient of variation is

CV(Y) ]\3/?;(5 ) _ 4/60@’M_ L (39)

B Frictionless Economy

In this Appendix, we show that the endogenous aggregate u can be exactly characterized
by the first moment of the marginal distribution of capital K and the dynamic productivity
distribution h with ¢ = 0.

In equation (9), the choice of the current level of employment can be derived from a static
problem as:

N(e, k; p) = arg max[ek“n” — w(u)n| (40)

n

which yields
N(e, k; p) = [vek® fu(p)]V ) (41)

Using this decision rule for employment, we can replace the first and second terms in equation

26The sum of i.i.d. log-normal variables is not log—normal in general. A widely used approximation (Fenton
Wilkinson; see Marlow, 1967) replaces Y with Y ~ LN (py, 02.) chosen so that E(Y) = E(Y) and Var(Y) =
Var(Y). Solving gives o3 = In[(e” v 1)/M+1] and py = In M+ p,+07;/2—0% /2. Because the approximation
matches moments by construction, (37)—(38) remain the exact values. The approximation is only needed if
one wants a closed-form pdf/cdf for Y (e.g., tail probabilities).



/(1=v)
ekn’ — w(p)n = (1 — v)e/E /0=y (L)) ) (42)

and we can rewrite the problem as follows:

/(1-v)
b 1) — 1 — e/ o/ [ Y 1§k — kK
v(e, ks p) = max| (1 - v)e e +(1-9)

(43)
+ Bld(p, wyo(e K1) 2] |
This problem yields the optimal investment decision G(g; 1) as follows:
G(e;p) = Lo(e) Li(w) (44)

(1-v)/(1—(a+v))
<2Hﬂ o) ZHH MGIDE ”>> (45)

1— (1 =8, (| )d(p, 1! Erev)
L) = ( (1= O 2 W)l i) V)) | "
o X, (i )i, 1) ()

This shows that the investment decision is independent of the current capital stock k, which
depends only on the idiosyncratic productivity of the previous period. This implies that (1)
it is sufficient to track the idiosyncratic productivity both in the current and previous periods
for each firm and (2) the distribution of the current and previous idiosyncratic productivity
h is a N, by N, grid point object.

It follows that the distribution of firms over idiosyncratic productivity and capital stock
can be recovered, pi(g;, k), from h in each period as follows. First, we can construct p. —1(¢;),
the marginal distribution of firms over ¢; for j = 1,..., N. in the previous period —1, and
e (g;), the marginal distribution of firms over ¢; for ¢ = 1,..., N, in the current period. We
can also construct II7 (5, ¢;), the transition probability Pr(e = ¢; | e_1 = ;). Therefore, we

can construct u(e, k), the distribution of firms over productivity and stock of capital in each



period as

(i, kj) = pe—1(g5)1T5 (g5, &) (47)

_ Lo(gj)pea(ey)
5 S Lo (o)

(48)

C Model Solution

In this section, we first outline the methodology used to construct the set of firm distri-
butions across transitions and the corresponding probability space. We then describe the

approach employed to solve the heterogeneous firm model.

C.1 Firm Distribution Across Transitions and its Probability Space

We construct the set of firm distributions across transitions, denoted by H, along with
the associated transition probability II(A' | k), to replicate the fluctuations in the marginal
distribution of firms over productivity, u.(¢). To construct the transition matrix II(h’ |
h), we approximate the multivariate stochastic process governing the set of moments m®
of the distribution p.(¢) using a finite-state Markov chain. We then use this discretized
process, together with the ergodic idiosyncratic transition probability 1I¢, to construct the

firm distribution across transitions, H.

C.1.1 Moments Selection and Construction of the transition probability II(4'|h)

To make the problem computationally feasible, we construct the set of firm distributions
across transitions, denoted by H, along with the associated transition probability II(A’ |
h), to replicate the fluctuations in the most volatile moments of the marginal productivity

distribution, p.(€). To this end, after simulating p.(¢), we implement the following steps:

1. Identify the granular segment of the productivity distribution—specifically, the region

of u.(e) where the Law of Large Numbers fails.



2. Select the set of most volatile moments that allow us to replicate the fluctuations in

the firm distribution within this granular segment.

3. Approximate the stochastic process governing the selected moments m® of . (e) using
a multivariate first-order Markov chain, following the discretization method of Terry

and Knotek II (2011). This yields a transition matrix II™ (m® | m*).

Note that since € follows a first-order Markov process, we have Pr(h’ | h) = Pr(m® | m?).
Therefore, we set II" = IT™".

Figure 2 presents the simulated productivity distributions, p.(¢), on a logarithmic scale
over 10,000 periods. The simulation indicates that the Law of Large Numbers does not
hold in the right tail of the productivity distribution. Consequently, we define the granular
section of the productivity distribution as the portion of y.(e) associated with & > e13.

Next, Figure 2 reports the distributions of the percentage deviations from their ergodic
values for the moments that characterize fluctuations in the productivity distribution p.(c)
within the granular section. Specifically, Figure 3 displays the percentage deviations of:
(A) mean productivity, (B) the standard deviation of productivity, (C) Pearson’s moment
coefficient of skewness, and (D) firm mass—each calculated among firms with & > &;3.

Interestingly, the simulation reveals that the dispersion of the percentage deviation in the
mean (0.398) is relatively low compared to those of the standard deviation (5.655), skewness
(8.632), and firm mass (2.999). Based on this, we simulate a granular economy that replicates
the cyclicality of: (1) the standard deviation, (2) Pearson’s moment coefficient of skewness,
and (3) firm mass within the granular section of the productivity distribution.

To discretize the multivariate stochastic process of the moment m®, we use a grid with

three points for each moment, i.e., d,,- = 3.



Figure 2: Simulated Productivity Distribution p.(¢)
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Notes: This figure illustrates the simulated productivity distribution, pe(g), on a logarithmic scale over 10,000 periods. Specif-
ically, it depicts the mass of firms corresponding to each productivity level.



Figure 3: Moments of the Tail
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Notes: The figure reports the distributions of percentage deviations from their ergodic values for: (A) mean productivity, (B)
standard deviation of productivity, (C) Pearson’s moment coefficient of skewness, and (D) firm mass—each calculated among
firms with € > €13. These distributions are derived from a 10,000-period simulation of the productivity distribution, ue ().

C.1.2 Constructing H
We construct the set of firm distributions across transitions,
H ={hy,hay...,hn,—1,hnN,},
by iterating steps 1 and 2 for F' times, in order to ultimately implement step 3:

1. Construct
Hf = {H’g,b H’z{,% te wuf:c,Nh}
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to reflect the discretized distribution mé.

2. Given IIf, implement a constrained draw of h such that each element of the set

H = {ni 0, .. 0!

f
l+ me— 1)NN57 hl""(ms 1)NH +120 0 hNEE}

satisfies the following conditions for all p,¢ =1,2,..., N, and 7,5 =1,2,..., N.:
:usqgl th+q 1)Ny, 8“8])

:uep EJ th+q 1)N, 8178])

where N,. = (number of moments)®n*.

3. Compute the average distribution:

-
Il
—_

C.2 Model Simulation

C.2.1 Firm’s Problem

We can rewrite the firm’s problem (Equation 9) using marginal utility, p = Ul(c,n"), as

follows:

ﬁ(s,k;u):n}gxp(u) [eF(k,n) — w(u)n —i +5ZH“M|M ZHHW Yo(e', k' 1) (49)

The evolution of the aggregate equilibrium is characterized by the following mappings:

p= Fp(:“)a

1o~ Gp).



Given the transition probabilities defined above, we express the Bellman equation in

terms of h and K, explicitly substituting these for u:

v(e, k; h, K) = maxp(h, K) [eF(k,n) —w(h, K)n — Z]+BZ 1" (K| ) Z 15, (e'le)v (e, ks B K
* X e

(51)

We approximate the equilibrium mappings using log-linear rules:
In(p) = ap(h) + Bp(h) In(K), (52)
In(K") = ak(h) + B (h) In(K) (53)

These log-linear rules are used to forecast the future values of the price level p and

aggregate capital stock K’. The coefficients o and  depend on the current aggregate state
h.

C.2.2 Solution Algorithm

The solution algorithm consists of an inner and outer loop:
e Inner Loop: Solve the firm’s value function, v(e, k; h, K), via value function iteration,

holding the forecasting rules for aggregate variables (Equations 52) fixed.

e Outer Loop: Simulate the economy forward. In each period, draw a new aggregate
state i/ based on I1". Use the firm’s policy functions (from the inner loop) and the tran-
sition probabilities 11, to determine firms’ optimal decisions and update the aggregate

capital stock and the distribution of firms. Then, update the forecasting rules.

The algorithm iterates between the inner and outer loops until the coefficients of the fore-

casting rules converge. This provides an approximate solution to the recursive equilibrium.

C.3 Performance

Our procedure to build firm distributions across transitions delivers an error of 0.0000830440,

computed as follows:

10



1 % 1 ]m'ﬁget — st.dev.(hj)| N |m;?;get — skew(hj)‘ N ‘mgf;get — Tail Mass(hj)| (54)
P T o

Figure 4 presents the kernel density estimates of the R? values for the 138 forecasting
rules applied to price and capital. For the capital forecasting rules, the mean and minimum
R? values are 0.9992 and 0.9891, respectively. Similarly, for the price forecasting rules, the

mean and minimum R? values are 0.9992 and 0.9962.
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Figure 4: Distribution of the R? of the Forecasting Rules

Notes: The figure reports the kernel densities of the R? values for the 138 forecasting rules. The blue line corresponds to price
forecasting rules, and the red line to capital forecasting rules.

D Data

Sample Selection.— We construct an annual panel dataset by merging firm-level TFP esti-
mates from Imrohoroglu and Tiizel (2014) with Compustat data from 1964 to 2019. Using

Standard Industry Classification (SIC) codes, we exclude firms in the oil, energy, and finan-

11



cial sectors from our sample. Specifically, we exclude:

e Oil and oil-related firms: SIC codes 2911, 5172, 1311, 4922, 4923, 4924, and 1389;
e Energy firms: SIC codes ranging from 4900 to 4940;

e Financial firms: SIC codes ranging from 6000 to 6999.

We also eliminate firms with missing data to ensure valid sales observations across the
sample. The TFP estimates are adjusted using industry-specific time dummies to remove
industry-year effects.

Variable Construction.—We define the variables used in our empirical analysis as follows:

1. Gross investment rate: Ratio of capital expenditures (CAPX) to plant, property, and

equipment (PPEGT). We control for 2-digit sector-by-year fixed effects.
2. Inaction rate: Mass of firms such that |i/k| < 0.01.

3. Net investment rate: Growth rate of PPEGT. We control for 2-digit sector-by-year

fixed effects.

4. Negative investment spike: Among the 500 largest firms (by sales) in the previous

period, defined as the mass of firms such that

AK
P <-02]).

5. Marginal product of capital (MPK): Logarithm of the ratio of sales (SALE) to physical

capital (PPEGT). We control for 2-digit sector-by-year fixed effects.

6. Idiosyncratic shocks: Approximated by the productivity growth rate:

Eit — Eit—
Aé\i’t = 1,t€—2,t1 (55)
i,t—1
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7. Granular residual: Difference between the sales-weighted and equally weighted average

of idiosyncratic shocks among the 200 largest firms in the previous period:
100 100

abaix SaleL 1
@tG b = Z —t 51‘775 100 Z Agl t- (56)

100
4 Sale, ")

8. Granular capital misallocation: Dispersion of MPK among the 200 largest firms:

1 200
MPK,200 __ o mean )2
o, = —ZOO;(MPKZ,t M P [mean)?, (57)

Table 6: Summary Statistics

X Observations mean sd min max

Qfabaiz 38 0.000 0.017 -0.031 0.056

In (oM PHK;200) 39 0.000 0.026 -0.055 0.0771
In(oMPHK,~200) 39 0.000 0.017 -0.048 0.047
Pr(|1] < 0.01) TOP 500 39 0.111  0.021 0.075 0.186
Pr (% < —0.2) TOP 500 39 0.024 0.0282 0.000 0.197

Notes: This table reports descriptive statistics for the variables used in Sec-
tion 3. All series are HP-filtered with a smoothing parameter of 6.25, except

for the inaction rate and the negative investment spike.
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E Equilibrium Wage Dynamics and Business Cycles

Table 7: The Impact of Frictions and General Equilibrium on Business Cycles

Variable Statistic =~ Benchmark (GE) Frictionless (GE) Partial Equilibrium
(¢ = 0.35) (¢ = 0.00) (Frictionless)
o(z) 0.294 0.377 0.858
Output (Y) o(z)/o(Y) 1.000 1.000 1.000
p(z,Y) 1.000 1.000 1.000
o () 0.171 0.119 2.702
Consumption (C) o(z)/o(Y) 0.582 0.316 3.150
p(z,Y) 0.786 0.716 0.442
o(x) 1.200 1.962 14.706
Investment (I) o(z)/o(Y) 4.088 5.209 17.146
p(z,Y) 0.901 0.975 0.050
o(z) 0.191 0.303 0.858
Hours (H) o(z)/o(Y) 0.651 0.805 1.000
p(z,Y) 0.834 0.962 1.000

Notes: This table compares business cycle moments across three model specifications to isolate the effects of
capital frictions and general equilibrium wage adjustments. (a) Column 1 reports the benchmark model with
capital irreversibility (¢ = 0.35); (b) Column 2 reports the general equilibrium model without capital irreversibil-
ity (¢» = 0.00); (¢) Column 3 reports a frictionless model in partial equilibrium, where wages do not adjust to

clear the aggregate labor market.
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F Cyclicality of the Real Interest Rate over Time

Table 8: Cyclical Dynamics of Risk-Free Rate

o(In(1+7)) p(In(l+7),InY)

Whole sample 1.310 -0.286
Pre-1980 1.131 -0.828
Post-1980 1.178 0.189

Notes: Real interest rate is measured as the nom-
inal return on 1-year Treasury bills (DGS1 taken
from FRED) adjusted for realized CPI inflation (CPI-
AUCSL_PC1 taken from FRED). Output measured
as real gross domestic product (GDPCA taken from
FRED). All series are HP-filtered in logs with a
smoothing parameter of 6.25, following Ravn and Uh-
lig (2002). Whole sample refers to the 1964-2019 se-
ries. Pre-1980 refers to the 1964:1979 sample. Post-

1980 refers to the 1980-2019 sample.
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G Decomposition of Irreversibility’s Impact

Table 9: Decomposition on the Effect of Capital Irreversibility and Misallocation

Benchmark No T.V. Depreciation Household Renting Capital
% p(x,InY) % p(x,InY) % p(x,InY)
InY 0.780 1.000 0.947 1.000 0.499 1.000
InC 1.437 0.786 1.050 0.702 0.882 0.702
In 7 0.612 0.901 0.978 0.967 0.386 0.967
InH 0.629 0.834 0.936 0.950 0.383 0.950
In(1+7) 1.443 -0.496 1.110 -0.148 0.889 0.823

Notes: This table compares the business cycle moments of the benchmark model, the model with
only the time-varying misallocation component, and the model without both the time-varying misal-
location and time-varying depreciation components. o(z) denotes the percentage standard deviation

No-irrev. )

of variable x; o(x)/o(x is the relative standard deviation with respect to its counterpart in

the model with ¢ = 0; and p(z,InY") is the contemporaneous correlation of x with output Y. All

series are HP-filtered with a smoothing parameter of 6.25, following Ravn and Uhlig (2002).

In Section 4.2, we discussed how investment irreversibility mitigates output volatility
by distinguishing between its direct effects on firm-level decision-making and its broader
general equilibrium implications. To assess the relative contribution of these two channels to
aggregate volatility, we consider a counterfactual scenario: an economy with no time-varying
capital depreciation, where capital adjustment costs are purely virtual. In this setting, while
adjustment costs continue to influence firms’ optimal capital choices, they do not entail any
actual reallocation of real resources. Consequently, this setup partially removes the indirect
general equilibrium effect, as the absence of real adjustment costs enhances the representative

household’s capacity to smooth consumption over time.2”

2"The indirect general equilibrium effect may still influence volatility in the no time-varying capital de-
preciation economy. Specifically, firms that remain within the inaction region and retain excessively large
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Table 9 presents the relative volatilities of the Benchmark and No Time-Varying De-
preciation economies, expressed relative to the Frictionless economy. The findings suggest
that the indirect general equilibrium effect accounts for at least three-quarters of the total
reduction in aggregate volatility.

We conclude by quantifying the contribution of capital misallocation fluctuations to gran-
ular volatility by analyzing a third counterfactual scenario: the Household Renting Capital
economy. In this setting, capital is rented by the representative household to firms each pe-
riod, ensuring that the marginal product of capital is equalized across firms and eliminating
factor misallocation. As shown in Table 9, while irreversibility partially dampens the aggre-
gate volatility arising from factor misallocation, it still accounts for more than one-third of

granular volatility.

capital stocks reduce the representative household’s capacity to smooth consumption over time.
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H Aggregate TFP Shock Economy

Table 10: Business Cycle Moments: Aggregate TFP Shock

W = 0.35 with y = Zek®lr ¢ = 0.00 with y = Zekel”

o(x) o(@) p(z,InY) o(r) o(@) p(z,InY)

a(Y) oY)
InY 1.888 1.000 1.000 1.898 1.000 1.000
InC 0.981 0.520 0.924 0.957 0.504 0.934
In7t 6.775 3.589 0.963 7412 3.905 0.965
In H 1.051 0.557 0.934 1.062  0.559 0.946
In(1+r) 0.169 0.089 0.848 0.151 0.079 0.871

Notes: The table compares the business cycle moments of model
economies whose volatility is exclusively driven by aggregate TFP
shock. In particular, ©» > 0 refers to the economy with partial cap-
ital irreversibility, and ¥ = 0 refers to the economy without par-
tial irreversibility. o(z) is the percentage standard deviation of x,
and o(x)/o(InY’) is the relative standard deviation to that of Y, and
p(z,InY’) is the contemporaneous correlation of x with Y. All series
are HP-filtered with a smoothing parameter of 6.25, following Ravn and

Uhlig (2002).
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I Granular shocks and Misallocation: Robustness Checks

Figure 5: Effect of Granular Residual Shock on Granular Misallocation
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Notes: Responses of the logarithm of the granular dispersion of the marginal product of capital to a negative one standard
deviation granular residual shock. The black line represents the response estimated from the data. The red line represents the
response obtained from the simulated data. The 95 percent confidence intervals of the empirical estimations are computed with
a wild bootstrap of 1000 repetitions. All series are HP-filtered using a smoothing parameter of 6.25, following Ravn and Uhlig
(2002). The sample period spans from 1980 to 2019. Granular misallocation is estimated conditional on 2-digit sector-by-year
fixed effects. For further details on data construction, see Appendix D.

19



Figure 6: Effect of Granular Residual Shock on Granular Misallocation
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Notes: Responses of the logarithm of the granular dispersion of the marginal product of capital to a negative one standard
deviation granular residual shock. The black line represents the response estimated from the data. The red line represents the
response obtained from the simulated data. The 95 percent confidence intervals of the empirical estimations are computed with
a wild bootstrap of 1000 repetitions. All series are HP-filtered using a smoothing parameter of 6.25, following Ravn and Uhlig
(2002). The sample period spans from 1964 to 2019. Granular misallocation is estimated conditional on 3-digit sector-by-year
fixed effects. For further details on data construction, see Appendix D.
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Figure 7: Effect of Granular Residual Shock on Granular Misallocation
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Notes: Responses of the logarithm of the granular dispersion of the marginal product of capital to a negative one standard
deviation granular residual shock. The black line represents the response estimated from the data. The red line represents the
response obtained from the simulated data. The 95 percent confidence intervals of the empirical estimations are computed with
a wild bootstrap of 1000 repetitions. All series are HP-filtered using a smoothing parameter of 6.25, following Ravn and Uhlig
(2002). The sample refers to the period spanning from 1980 to 2019. Granular misallocation is estimated conditional on 3-digit
sector-by-year fixed effects. For further details on data construction, see Appendix D.
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J Policy Implications

Table 11: Business Cycle Moments

Benchmark Subsidy No-Price Gap
exp(z) o(xz) plx,InY) exp(z) o(z) p(z,InY) exp(z) o(z) plxz,InY)
InY 0.778  0.295 1.000 0.802  0.320 1.000 0.787 0.377 1.000
InC 0.646 0.170  0.787 0.656 0.161 0.796 0.659 0.119  0.716
In/l 0.132 1.210 0.905 0.131 1.263 0.862 0.128  1.962 0.975
In H 0.336  0.193  0.839 0.341 0.215 0.892 0.333 0.303  0.962
In(1+r) 1.042 0.025 -0.496 1.042  0.023  -0.332 1.042 0.018  -0.022

Notes: The table reports the business cycle moments of the Benchmark economy and the economies under

the two downsize policies. o(zx) is the percentage standard deviation of z, and p(z,InY’) is the contempo-

raneous correlation of x with InY. The model moments are obtained from a 15,000-period unconditional

simulation using the solution of the model. The reported standard deviations and correlations refer to HP-

filtered series in logarithms, using a smoothing parameter of 6.25, following Ravn and Uhlig (2002).
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