
Online Appendix

A Analytical Results

A.1 Proof Lemma 1

Each firm i chooses next period capital ki,t`1 one period in advance. Idiosyncratic pro-

ductivity follows

ln "i,t`1 “ ⇠i,t ` ✏i,t`1, (23)

where ⇠i,t „ Np0, �2

⇠ q is observed at time t; ✏i,t`1 „ Np0, �2

✏ q is realized at the start of t ` 1;

and ⇠i,t, ✏i,t are independent across both time and firms and mutually independent. There is

no aggregate shock.

The firm’s objective at time t is to maximize its present discounted expected future profits

by choosing an investment plan tit`ju8
j“0

:

Et

ˆ 8ÿ

j“0

1

p1 ` rqj p"i,t`jk
↵
i,t`j´ii,t`jq

˙
s.t. ki,t`j`1 “ p1´�qki,j`t`ii,t`j, given ki,t, (24)

where r is the interest rate faced by the firm and � is the depreciation rate of capital.

The first-order condition for ki,t`1 is

↵Etp"i,t`1qk↵´1

i,t`1
“ r ` �. (25)

Solving (25) for ki,t`1 and taking logs yields

ln ki,t`1 “ 1

1 ´ ↵
lnEtp"i,t`1q ´ 1

1 ´ ↵
ln

´
r ` �

↵

¯
. (26)

Given the log-normal structure,

Etp"i,t`1q “ exp
´
⇠i,t ` 1

2
�
2

✏

¯
. (27)
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Substituting into (26) gives

ln ki,t`1 “ A ` B⇠i,t, A :“ 1

1 ´ ↵

´
1

2
�
2

✏ ´ ln
r ` �

↵

¯
, B :“ 1

1 ´ ↵
. (28)

Hence ln ki,t`1 „ NpA,B2
�
2

⇠ q with

Epln kq “ A, Varpln kq “ �
2

⇠

p1 ´ ↵q2 . (29)

We have ln " “ ⇠` ✏ and ln k “ A`B⇠. Because p⇠, ✏q is jointly normal and ln k is a�ne

in ⇠, pln ", ln kq is bivariate normal. Their covariance is

Covpln ", ln kq “ BVarp⇠q “ �
2

⇠

1 ´ ↵
. (30)

Output y “ "k
↵ implies

ln y “ ln " ` ↵ ln k. (31)

Thus ln y is normal with mean

µy :“ Epln yq “ Epln "q ` ↵Epln kq “ 1

2
�
2

✏ ` ↵A, (32)

and variance

�
2

y :“ Varpln yq “ Varpln "q ` ↵
2Varpln kq ` 2↵Covpln ", ln kq (33)

“ p�2

⇠ ` �
2

✏ q ` ↵
2

�
2

⇠

p1 ´ ↵q2 ` 2↵
�
2

⇠

1 ´ ↵
(34)

“ �
2

✏ ` �
2

⇠

p1 ´ ↵q2 . (35)

Equations (32)–(35) complete the proof of Lemma 1. ⌅

A.2 Proof of Proposition 1

Let Y “ ∞M
i“1

yi with yi i.i.d. „ LNpµy, �
2

yq as in Lemma 1. Because the first two moments

of a log-normal variable are available in closed form and the tyiuMi“1
are independent across

firms, we obtain EpY q and VarpY q exactly by (i) linearity of expectation and (ii) the fact

2



that all cross-firm covariances vanish.26 We now report these exact moments.

For yi „ LNpµy, �
2

yq,

Epyiq “ e
µy`�2

y{2
, Varpyiq “ pe�2

y ´ 1qe2µy`�2
y . (36)

Independence implies

EpY q “ Me
µy`�2

y{2
, (37)

VarpY q “ Mpe�2
y ´ 1q e2µy`�2

y . (38)

Hence the (exact) coe�cient of variation is

CV pY q “
a
VarpY q
EpY q “

d
e
�2
y ´ 1

M
. (39)

B Frictionless Economy

In this Appendix, we show that the endogenous aggregate µ can be exactly characterized

by the first moment of the marginal distribution of capital K and the dynamic productivity

distribution h with  “ 0.

In equation (9), the choice of the current level of employment can be derived from a static

problem as:

Np", k;µq “ arg max
n

r"k↵
n
⌫ ´ !pµqns (40)

which yields

Np", k;µq “ r⌫"k↵{!pµqs1{p1´⌫q (41)

Using this decision rule for employment, we can replace the first and second terms in equation

26The sum of i.i.d. log-normal variables is not log-normal in general. A widely used approximation (Fenton–
Wilkinson; see Marlow, 1967) replaces Y with eY „ LNpµY ,�

2
Y q chosen so that EpeY q “ EpY q and VarpeY q “

VarpY q. Solving gives �2
Y “ ln

“
pe�2

y ´1q{M`1
‰
and µY “ lnM`µy`�2

y{2´�2
Y {2. Because the approximation

matches moments by construction, (37)–(38) remain the exact values. The approximation is only needed if
one wants a closed-form pdf/cdf for Y (e.g., tail probabilities).
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(9) as:

"k
↵
n
⌫ ´ !pµqn “ p1 ´ ⌫q"1{p1´⌫q

k
↵{p1´⌫q

ˆ
⌫

!pµq

˙⌫{p1´⌫q
, (42)

and we can rewrite the problem as follows:

vp", k;µq “ max
k1

”
p1 ´ ⌫q"1{p1´⌫q

k
↵{p1´⌫q

ˆ
⌫

!pµq

˙⌫{p1´⌫q
` p1 ´ �qk ´ k

1

` E
“
dpµ, µ1qvp"1

, k
1;µ1q | ", µ

‰ı
.

(43)

This problem yields the optimal investment decision Gp";µq as follows:

Gp";µq “ L0p"qL1pµq (44)

L0p";µq “
˜

ÿ

µ1
⇧µpµ1|µq

ÿ

"1
⇧"

µ1|µp"1|"q"11{p1´⌫q
¸p1´⌫q{p1´p↵`⌫qq

(45)

L1pµq “
˜

1 ´ p1 ´ �q ∞
µ1 ⇧µpµ1|µqdpµ, µ1q

↵
∞

µ1 ⇧µpµ1|µqdpµ, µ1q
´

⌫
!pµ1q

¯⌫{p1´⌫q

¸ 1´⌫
↵`⌫´1

. (46)

This shows that the investment decision is independent of the current capital stock k, which

depends only on the idiosyncratic productivity of the previous period. This implies that (1)

it is su�cient to track the idiosyncratic productivity both in the current and previous periods

for each firm and (2) the distribution of the current and previous idiosyncratic productivity

h is a N" by N" grid point object.

It follows that the distribution of firms over idiosyncratic productivity and capital stock

can be recovered, µp"i, kjq, from h in each period as follows. First, we can construct µ",´1p"jq,

the marginal distribution of firms over "j for j “ 1, . . . , N" in the previous period ´1, and

µ"p"iq, the marginal distribution of firms over "i for i “ 1, . . . , N" in the current period. We

can also construct ⇧"
hp"j, "iq, the transition probability Prp" “ "i | "´1 “ "jq. Therefore, we

can construct µp", kq, the distribution of firms over productivity and stock of capital in each
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period as

µp"i, kjq “ µ",´1p"jq⇧"
hp"j, "iq (47)

kj “ L0p"jqµ",´1p"jq∞
m L0p"mqµ",´1p"mqK (48)

C Model Solution

In this section, we first outline the methodology used to construct the set of firm distri-

butions across transitions and the corresponding probability space. We then describe the

approach employed to solve the heterogeneous firm model.

C.1 Firm Distribution Across Transitions and its Probability Space

We construct the set of firm distributions across transitions, denoted by H, along with

the associated transition probability ⇧ph1 | hq, to replicate the fluctuations in the marginal

distribution of firms over productivity, µ"p"q. To construct the transition matrix ⇧ph1 |

hq, we approximate the multivariate stochastic process governing the set of moments m
"

of the distribution µ"p"q using a finite-state Markov chain. We then use this discretized

process, together with the ergodic idiosyncratic transition probability ⇧", to construct the

firm distribution across transitions, H.

C.1.1 Moments Selection and Construction of the transition probability ⇧ph1|hq

To make the problem computationally feasible, we construct the set of firm distributions

across transitions, denoted by H, along with the associated transition probability ⇧ph1 |

hq, to replicate the fluctuations in the most volatile moments of the marginal productivity

distribution, µ"p"q. To this end, after simulating µ"p"q, we implement the following steps:

1. Identify the granular segment of the productivity distribution—specifically, the region

of µ"p"q where the Law of Large Numbers fails.
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2. Select the set of most volatile moments that allow us to replicate the fluctuations in

the firm distribution within this granular segment.

3. Approximate the stochastic process governing the selected moments m" of µ"p"q using

a multivariate first-order Markov chain, following the discretization method of Terry

and Knotek II (2011). This yields a transition matrix ⇧m"pm"1 | m"q.

Note that since " follows a first-order Markov process, we have Prph1 | hq ” Prpm"1 | m"q.

Therefore, we set ⇧h “ ⇧m"
.

Figure 2 presents the simulated productivity distributions, µ"p"q, on a logarithmic scale

over 10,000 periods. The simulation indicates that the Law of Large Numbers does not

hold in the right tail of the productivity distribution. Consequently, we define the granular

section of the productivity distribution as the portion of µ"p"q associated with " • "13.

Next, Figure 2 reports the distributions of the percentage deviations from their ergodic

values for the moments that characterize fluctuations in the productivity distribution µ"p"q

within the granular section. Specifically, Figure 3 displays the percentage deviations of:

(A) mean productivity, (B) the standard deviation of productivity, (C) Pearson’s moment

coe�cient of skewness, and (D) firm mass—each calculated among firms with " • "13.

Interestingly, the simulation reveals that the dispersion of the percentage deviation in the

mean (0.398) is relatively low compared to those of the standard deviation (5.655), skewness

(8.632), and firm mass (2.999). Based on this, we simulate a granular economy that replicates

the cyclicality of: (1) the standard deviation, (2) Pearson’s moment coe�cient of skewness,

and (3) firm mass within the granular section of the productivity distribution.

To discretize the multivariate stochastic process of the moment m", we use a grid with

three points for each moment, i.e., dm" “ 3.
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Figure 2: Simulated Productivity Distribution µ"p"q

Notes: This figure illustrates the simulated productivity distribution, µ"p"q, on a logarithmic scale over 10,000 periods. Specif-

ically, it depicts the mass of firms corresponding to each productivity level.
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Figure 3: Moments of the Tail
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Notes: The figure reports the distributions of percentage deviations from their ergodic values for: (A) mean productivity, (B)

standard deviation of productivity, (C) Pearson’s moment coe�cient of skewness, and (D) firm mass—each calculated among

firms with " • "13. These distributions are derived from a 10,000-period simulation of the productivity distribution, µ"p"q.

C.1.2 Constructing H

We construct the set of firm distributions across transitions,

H “ th1, h2, . . . , hNh´1, hNh
u,

by iterating steps 1 and 2 for F times, in order to ultimately implement step 3:

1. Construct

H
f “ tµf

",1, µ
f
",2, . . . , µ

f
",Nh

u
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to reflect the discretized distribution m
".

2. Given ⇧", implement a constrained draw of h such that each element of the set

H
f “ thf

1
, h

f
2
, . . . , h

f
l`pm"´1qNµ"

, h
f
l`pm"´1qNµ"`1

, . . . , h
f
N2

µ"
u

satisfies the following conditions for all p, q “ 1, 2, . . . , Nµ" and i, j “ 1, 2, . . . , N":

µ
f
",qp"iq “

ÿ

j

h
f
p`pq´1qNµ"

p"i, "jq,

µ
f
",pp"jq “

ÿ

i

h
f
p`pq´1qNµ"

p"i, "jq,

where Nµ" “ pnumber of momentsqdm" .

3. Compute the average distribution:

H “ 1

F

Fÿ

f“1

H
f
.

C.2 Model Simulation

C.2.1 Firm’s Problem

We can rewrite the firm’s problem (Equation 9) using marginal utility, p ” U
1
cpc, nhq, as

follows:

bvp", k;µq “ max
n,i

ppµq r"F pk, nq ´ !pµqn ´ is ` �

ÿ

µ1
⇧µpµ1|µq

ÿ

"1
⇧"

µ1|µp"1|"qbvp"1
, k

1;µ1q (49)

The evolution of the aggregate equilibrium is characterized by the following mappings:

p “ �ppµq,

µ
1 „ Gpµq.

(50)
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Given the transition probabilities defined above, we express the Bellman equation in

terms of h and K, explicitly substituting these for µ:

vp", k;h,Kq “ max
n,i

pph,Kq r"F pk, nq ´ !ph,Kqn ´ is`�
ÿ

h1
⇧hph1|hq

ÿ

"1
⇧"

h1p"1|"qvp"1
, k

1;h1
, K

1q

(51)

We approximate the equilibrium mappings using log-linear rules:

lnpbpq “ ↵pphq ` �pphq lnpKq, (52)

lnp bK 1q “ ↵Kphq ` �Kphq lnpKq (53)

These log-linear rules are used to forecast the future values of the price level p and

aggregate capital stock K
1. The coe�cients ↵ and � depend on the current aggregate state

h.

C.2.2 Solution Algorithm

The solution algorithm consists of an inner and outer loop:

• Inner Loop: Solve the firm’s value function, vp", k;h,Kq, via value function iteration,

holding the forecasting rules for aggregate variables (Equations 52) fixed.

• Outer Loop: Simulate the economy forward. In each period, draw a new aggregate

state h1 based on ⇧h. Use the firm’s policy functions (from the inner loop) and the tran-

sition probabilities ⇧"
h1 to determine firms’ optimal decisions and update the aggregate

capital stock and the distribution of firms. Then, update the forecasting rules.

The algorithm iterates between the inner and outer loops until the coe�cients of the fore-

casting rules converge. This provides an approximate solution to the recursive equilibrium.

C.3 Performance

Our procedure to build firm distributions across transitions delivers an error of 0.0000830440,

computed as follows:
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1

Nh

Nhÿ

j“1

1

3

˜ˇ̌
m

target

1,j ´ st.dev.phjq
ˇ̌

m
target

1,j

`
ˇ̌
m

target

2,j ´ skewphjq
ˇ̌

m
target

2,j

`
ˇ̌
m

target

3,j ´ Tail Massphjq
ˇ̌

m
target

3,j

¸
(54)

Figure 4 presents the kernel density estimates of the R
2 values for the 138 forecasting

rules applied to price and capital. For the capital forecasting rules, the mean and minimum

R
2 values are 0.9992 and 0.9891, respectively. Similarly, for the price forecasting rules, the

mean and minimum R
2 values are 0.9992 and 0.9962.
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Figure 4: Distribution of the R
2 of the Forecasting Rules

Notes: The figure reports the kernel densities of the R2
values for the 138 forecasting rules. The blue line corresponds to price

forecasting rules, and the red line to capital forecasting rules.

D Data

Sample Selection.— We construct an annual panel dataset by merging firm-level TFP esti-

mates from İmrohoroğlu and Tüzel (2014) with Compustat data from 1964 to 2019. Using

Standard Industry Classification (SIC) codes, we exclude firms in the oil, energy, and finan-
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cial sectors from our sample. Specifically, we exclude:

• Oil and oil-related firms: SIC codes 2911, 5172, 1311, 4922, 4923, 4924, and 1389;

• Energy firms: SIC codes ranging from 4900 to 4940;

• Financial firms: SIC codes ranging from 6000 to 6999.

We also eliminate firms with missing data to ensure valid sales observations across the

sample. The TFP estimates are adjusted using industry-specific time dummies to remove

industry-year e↵ects.

Variable Construction.—We define the variables used in our empirical analysis as follows:

1. Gross investment rate: Ratio of capital expenditures (CAPX) to plant, property, and

equipment (PPEGT). We control for 2-digit sector-by-year fixed e↵ects.

2. Inaction rate: Mass of firms such that |i{k| § 0.01.

3. Net investment rate: Growth rate of PPEGT. We control for 2-digit sector-by-year

fixed e↵ects.

4. Negative investment spike: Among the 500 largest firms (by sales) in the previous

period, defined as the mass of firms such that

Pr

ˆ
�k

1

k
§ ´0.2

˙
.

5. Marginal product of capital (MPK): Logarithm of the ratio of sales (SALE) to physical

capital (PPEGT). We control for 2-digit sector-by-year fixed e↵ects.

6. Idiosyncratic shocks: Approximated by the productivity growth rate:

�"i,t “ "i,t ´ "i,t´1

"i,t´1

. (55)
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7. Granular residual: Di↵erence between the sales-weighted and equally weighted average

of idiosyncratic shocks among the 200 largest firms in the previous period:

⇥Gabaix

t “
100ÿ

i“1

Salei,t´1

Sale100t´1

�"i,t ´ 1

100

100ÿ

i“1

�"i,t. (56)

8. Granular capital misallocation: Dispersion of MPK among the 200 largest firms:

�
MPK,200
t “

gffe 1

200

200ÿ

i“1

pMPKi,t ´ MPK
mean

t q2. (57)

Table 6: Summary Statistics

x Observations mean sd min max

⇥Gabaix
t 38 0.000 0.017 -0.031 0.056

lnp�MPK,200q 39 0.000 0.026 -0.055 0.0771

lnp�MPK,´200q 39 0.000 0.017 -0.048 0.047

Prp| ik | § 0.01q TOP 500 39 0.111 0.021 0.075 0.186

Prp�k1
k § ´0.2q TOP 500 39 0.024 0.0282 0.000 0.197

Notes : This table reports descriptive statistics for the variables used in Sec-

tion 3. All series are HP-filtered with a smoothing parameter of 6.25, except

for the inaction rate and the negative investment spike.
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E Equilibrium Wage Dynamics and Business Cycles

Table 7: The Impact of Frictions and General Equilibrium on Business Cycles

Variable Statistic Benchmark (GE) Frictionless (GE) Partial Equilibrium

( “ 0.35) ( “ 0.00) (Frictionless)

Output (Y)

�pxq 0.294 0.377 0.858

�pxq{�pY q 1.000 1.000 1.000

⇢px, Y q 1.000 1.000 1.000

Consumption (C)

�pxq 0.171 0.119 2.702

�pxq{�pY q 0.582 0.316 3.150

⇢px, Y q 0.786 0.716 0.442

Investment (I)

�pxq 1.200 1.962 14.706

�pxq{�pY q 4.088 5.209 17.146

⇢px, Y q 0.901 0.975 0.050

Hours (H)

�pxq 0.191 0.303 0.858

�pxq{�pY q 0.651 0.805 1.000

⇢px, Y q 0.834 0.962 1.000

Notes: This table compares business cycle moments across three model specifications to isolate the e↵ects of

capital frictions and general equilibrium wage adjustments. (a) Column 1 reports the benchmark model with

capital irreversibility ( “ 0.35); (b) Column 2 reports the general equilibrium model without capital irreversibil-

ity ( “ 0.00); (c) Column 3 reports a frictionless model in partial equilibrium, where wages do not adjust to

clear the aggregate labor market.
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F Cyclicality of the Real Interest Rate over Time

Table 8: Cyclical Dynamics of Risk-Free Rate

�plnp1 ` rqq ⇢plnp1 ` rq, lnY q

Whole sample 1.310 -0.286

Pre-1980 1.131 -0.828

Post-1980 1.178 0.189

Notes: Real interest rate is measured as the nom-

inal return on 1-year Treasury bills (DGS1 taken

from FRED) adjusted for realized CPI inflation (CPI-

AUCSL PC1 taken from FRED). Output measured

as real gross domestic product (GDPCA taken from

FRED). All series are HP-filtered in logs with a

smoothing parameter of 6.25, following Ravn and Uh-

lig (2002). Whole sample refers to the 1964–2019 se-

ries. Pre-1980 refers to the 1964:1979 sample. Post-

1980 refers to the 1980–2019 sample.
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G Decomposition of Irreversibility’s Impact

Table 9: Decomposition on the E↵ect of Capital Irreversibility and Misallocation

Benchmark No T.V. Depreciation Household Renting Capital

�pxq
�pxNo-irrev.q ⇢px, lnY q �pxq

�pxNo-irrev.q ⇢px, lnY q �pxq
�pxNo-irrev.q ⇢px, lnY q

lnY 0.780 1.000 0.947 1.000 0.499 1.000

lnC 1.437 0.786 1.050 0.702 0.882 0.702

ln I 0.612 0.901 0.978 0.967 0.386 0.967

lnH 0.629 0.834 0.936 0.950 0.383 0.950

lnp1 ` rq 1.443 -0.496 1.110 -0.148 0.889 0.823

Notes: This table compares the business cycle moments of the benchmark model, the model with

only the time-varying misallocation component, and the model without both the time-varying misal-

location and time-varying depreciation components. �pxq denotes the percentage standard deviation

of variable x; �pxq{�pxNo-irrev.q is the relative standard deviation with respect to its counterpart in

the model with  “ 0; and ⇢px, lnY q is the contemporaneous correlation of x with output Y . All

series are HP-filtered with a smoothing parameter of 6.25, following Ravn and Uhlig (2002).

In Section 4.2, we discussed how investment irreversibility mitigates output volatility

by distinguishing between its direct e↵ects on firm-level decision-making and its broader

general equilibrium implications. To assess the relative contribution of these two channels to

aggregate volatility, we consider a counterfactual scenario: an economy with no time-varying

capital depreciation, where capital adjustment costs are purely virtual. In this setting, while

adjustment costs continue to influence firms’ optimal capital choices, they do not entail any

actual reallocation of real resources. Consequently, this setup partially removes the indirect

general equilibrium e↵ect, as the absence of real adjustment costs enhances the representative

household’s capacity to smooth consumption over time.27

27The indirect general equilibrium e↵ect may still influence volatility in the no time-varying capital de-
preciation economy. Specifically, firms that remain within the inaction region and retain excessively large
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Table 9 presents the relative volatilities of the Benchmark and No Time-Varying De-

preciation economies, expressed relative to the Frictionless economy. The findings suggest

that the indirect general equilibrium e↵ect accounts for at least three-quarters of the total

reduction in aggregate volatility.

We conclude by quantifying the contribution of capital misallocation fluctuations to gran-

ular volatility by analyzing a third counterfactual scenario: the Household Renting Capital

economy. In this setting, capital is rented by the representative household to firms each pe-

riod, ensuring that the marginal product of capital is equalized across firms and eliminating

factor misallocation. As shown in Table 9, while irreversibility partially dampens the aggre-

gate volatility arising from factor misallocation, it still accounts for more than one-third of

granular volatility.

capital stocks reduce the representative household’s capacity to smooth consumption over time.
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H Aggregate TFP Shock Economy

Table 10: Business Cycle Moments: Aggregate TFP Shock

 “ 0.35 with y “ Z"k
↵
l
⌫

 “ 0.00 with y “ Z"k
↵
l
⌫

�pxq �pxq
�pY q ⇢px, lnY q �pxq �pxq

�pY q ⇢px, lnY q

lnY 1.888 1.000 1.000 1.898 1.000 1.000

lnC 0.981 0.520 0.924 0.957 0.504 0.934

ln I 6.775 3.589 0.963 7.412 3.905 0.965

lnH 1.051 0.557 0.934 1.062 0.559 0.946

ln p1 ` rq 0.169 0.089 0.848 0.151 0.079 0.871

Notes : The table compares the business cycle moments of model

economies whose volatility is exclusively driven by aggregate TFP

shock. In particular,  ° 0 refers to the economy with partial cap-

ital irreversibility, and  “ 0 refers to the economy without par-

tial irreversibility. �pxq is the percentage standard deviation of x,

and �pxq{�plnY q is the relative standard deviation to that of Y, and

⇢px, lnY q is the contemporaneous correlation of x with Y . All series

are HP-filtered with a smoothing parameter of 6.25, following Ravn and

Uhlig (2002).

18



I Granular shocks andMisallocation: Robustness Checks

Figure 5: E↵ect of Granular Residual Shock on Granular Misallocation
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Notes: Responses of the logarithm of the granular dispersion of the marginal product of capital to a negative one standard

deviation granular residual shock. The black line represents the response estimated from the data. The red line represents the

response obtained from the simulated data. The 95 percent confidence intervals of the empirical estimations are computed with

a wild bootstrap of 1000 repetitions. All series are HP-filtered using a smoothing parameter of 6.25, following Ravn and Uhlig

(2002). The sample period spans from 1980 to 2019. Granular misallocation is estimated conditional on 2-digit sector-by-year

fixed e↵ects. For further details on data construction, see Appendix D.
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Figure 6: E↵ect of Granular Residual Shock on Granular Misallocation
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Notes: Responses of the logarithm of the granular dispersion of the marginal product of capital to a negative one standard

deviation granular residual shock. The black line represents the response estimated from the data. The red line represents the

response obtained from the simulated data. The 95 percent confidence intervals of the empirical estimations are computed with

a wild bootstrap of 1000 repetitions. All series are HP-filtered using a smoothing parameter of 6.25, following Ravn and Uhlig

(2002). The sample period spans from 1964 to 2019. Granular misallocation is estimated conditional on 3-digit sector-by-year

fixed e↵ects. For further details on data construction, see Appendix D.
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Figure 7: E↵ect of Granular Residual Shock on Granular Misallocation
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Notes: Responses of the logarithm of the granular dispersion of the marginal product of capital to a negative one standard

deviation granular residual shock. The black line represents the response estimated from the data. The red line represents the

response obtained from the simulated data. The 95 percent confidence intervals of the empirical estimations are computed with

a wild bootstrap of 1000 repetitions. All series are HP-filtered using a smoothing parameter of 6.25, following Ravn and Uhlig

(2002). The sample refers to the period spanning from 1980 to 2019. Granular misallocation is estimated conditional on 3-digit

sector-by-year fixed e↵ects. For further details on data construction, see Appendix D.
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J Policy Implications

Table 11: Business Cycle Moments

Benchmark Subsidy No-Price Gap

exppxq �pxq ⇢px, lnY q exppxq �pxq ⇢px, lnY q exppxq �pxq ⇢px, lnY q

lnY 0.778 0.295 1.000 0.802 0.320 1.000 0.787 0.377 1.000

lnC 0.646 0.170 0.787 0.656 0.161 0.796 0.659 0.119 0.716

ln I 0.132 1.210 0.905 0.131 1.263 0.862 0.128 1.962 0.975

lnH 0.336 0.193 0.839 0.341 0.215 0.892 0.333 0.303 0.962

lnp1 ` rq 1.042 0.025 -0.496 1.042 0.023 -0.332 1.042 0.018 -0.022

Notes: The table reports the business cycle moments of the Benchmark economy and the economies under

the two downsize policies. �pxq is the percentage standard deviation of x, and ⇢px, lnY q is the contempo-

raneous correlation of x with lnY . The model moments are obtained from a 15,000-period unconditional

simulation using the solution of the model. The reported standard deviations and correlations refer to HP-

filtered series in logarithms, using a smoothing parameter of 6.25, following Ravn and Uhlig (2002).
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