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1 Introduction

“Subjective uncertainty is about the “unknown unknowns”. When, as today, the

unknown unknowns dominate, and the economic environment is so complex as to

appear nearly incomprehensible, the result is extreme prudence, [. . . ], on the part of

investors, consumers and firms.” Olivier Blanchard (2009)

How large is the role of increased uncertainty in driving economic downturns? Is there

a link between a rise in firm-level uncertainty and the subsequent pace of economic recovery?

To explore these questions, I construct new empirical measures of firm-level uncertainty, and

I show that the degree of uncertainty varies across firms and the average level of uncertainty,

as well as its dispersion, across firms is countercyclical. To account for these regularities, I

develop a heterogeneous firm model that incorporates learning at the firm level with uncertainty

shocks. The model can match both the cross-sectional and time series properties of firm-level

uncertainty. In addition, the model successfully reproduces a gradual recovery of the aggregate

economy following uncertainty shocks.

A defining feature of this paper is that the uncertainty faced by firms not only varies over

time but also varies across firms. One common approach in the uncertainty shock literature,

following the seminal work of Bloom (2009), has been to study stochastic volatility models.

I break with this tradition primarily because my learning model is well-suited to capture the

heterogeneous uncertainty evident in microdata.1 I integrate Jovanovic (1982)-style of Bayesian

learning into an otherwise standard heterogeneous firm business cycle framework. In this model,

by contrast, uncertainty, defined as the conditional variance of forecasts of firm performance,

varies across firms depending on the information each firm possesses. Firms are heterogeneous

in both productivity and their confidence about that productivity; better informed firms have

lower posterior variances of their beliefs. Two different firms can have the same posterior mean

while differing in their posterior variances. Hence, uncertainty differs across firms. A second

appealing feature of the model is the fact that the recession in response to an uncertainty shock

is not followed by a sharp recovery, as happens in existing stochastic-volatility-based uncertainty

shock models.2 Instead, my model with a non-trivial distribution of firms with learning drives

a slow economic recovery as firms gradually regain information and confidence. Moreover, these

results require no additional rigidity or frictions. In the absence of labor and capital adjustment

costs, uncertainty shocks still cause recessions.3

1In a common stochastic volatility approach as in Vavra (2014), Bloom et al. (2018), and Bachmann and Bayer
(2013), there is full information and all agents know the true distribution of shocks that they face, including its
volatility, which varies over time. In uncertain times, the volatility that every agent faces rises equally.

2See, for the discussion, Bachmann, Elstner and Sims (2013) and Bachmann and Bayer (2013).
3The large body of literature about the relation between uncertainty and investment studies the real options

effect in models with adjustment costs, as in Bertola and Caballero (1994), Dixit and Pindyck (1994), Abel and
Eberly (1996) and Caballero and Engel (1999).
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I construct a new panel dataset of firm-level uncertainty based on data from the Institu-

tional Brokers’ Estimate System (I/B/E/S), Center for Research in Securities Prices (CRSP),

OptionMetrics, and Compustat databases. By merging these data, I construct an annual panel

of US public firms with uncertainty measures such as an ex-ante earnings forecast dispersion

among market analysts, ex-post-realized forecast errors and stock price volatility measures. Ap-

pealing features of the dataset, particularly with regard to the inclusion of earnings forecast

data, include the following: (1) it is disaggregated at the firm level, thereby allowing the ex-

amination of the cross-sectional characteristics of firm-level uncertainty, (2) it contains ex-ante

information on firm profitability, which is arguably better suited than ex-post information for

gauging the degree of uncertainty individual firms face, and (3) the data is available in real time

so that researchers and policymakers can gauge and monitor the level of uncertainty in a timely

manner.

The firm-level measures of uncertainty uncover the following new facts. First, the degree of

uncertainty facing individual firms differs across firms; for example, Apple’s measure of uncer-

tainty was much lower than Ford’s during the Great Recession in 2009, and vice versa during the

dot-com recession in 2001. Second, the first and second moments of the distribution of firm-level

uncertainty measures are countercyclical. Specifically, they are negatively correlated with real

GDP series.

In light of the evidence above, I propose a new model that features heterogeneous uncer-

tainty, and I study its role in propagating aggregate shocks. My model builds on a standard

heterogeneous firm business cycle model, but the model incorporates three key features of firm-

level productivity dynamics distinguishing it from existing studies. First, firms face imperfect

information about their productivity. While each firm has a specific productivity level, this

level is not directly observable. Instead, firms receive private signals about their productivity,

which they use to learn and update their beliefs over time in a Bayesian way.4 Second, firm-level

productivity changes infrequently, similar to a regime-switching process. At random intervals,

a firm’s productivity may be reset to a new level drawn from a known distribution. Firms are

aware when these resets occur but do not immediately know the new productivity level, requir-

ing them to restart their learning process. Third, the precision of the private signals that firms

receive about their productivity is time-varying and stochastic. This signal noise is common

across all firms, introducing an element of aggregate uncertainty into the model. As the noise

level changes, it affects all firms’ learning and ability to accurately assess their productivity

simultaneously.

This paper presents an innovative mechanism that emerges from the above setting, exploring

the role of noise in productivity signals as a source of uncertainty faced by individual firms.

I investigate the impact of a rise in the variance of noisy signals received by firms on their

4Bernanke (1983) develops a single-firm, partial equilibrium model with dynamic Bayesian inference specifica-
tions to study short-term fluctuations of irreversible investment under time-varying option values.
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dynamics and the aggregate economy and find that such uncertainty shocks can generate cyclical

fluctuations in the aggregate economy consistent with empirical data, but through a distinct

mechanism that is novel in the literature. In the model, firms are Bayesian and make investment

decisions based on their beliefs about productivity, which may not necessarily align with true

productivity. The key determinant of aggregate output in this setting is the cross-sectional

distribution of beliefs about productivity. Bayesian firms form expectations by relying on signals,

but the weight they assign to the observed signal depends on its accuracy, as measured by the

variance of noise in the private signal. When signals are completely accurate, firm beliefs match

the true value of productivity. However, when signals are noisy, firms place less weight on the

less informative signals and more weight on the unconditional mean of productivity across firms.

As a result, the dispersion of beliefs held by firms about their productivity decreases, clustering

more closely around the average productivity level of all firms.

The major aggregate implications are two-fold.5 First, a more compressed distribution of

beliefs leads to a greater discrepancy between the true distribution of productivity and the belief

distribution. This implies that each firm’s choice of capital stock generally differs more from

what the truth implies, resulting in greater misallocation of capital across firms and depressed

aggregate productivity and output. Second, a more compressed distribution of beliefs leads to a

lower aggregate capital stock in the economy. The key factor is the decreasing returns to scale in

the production technology, a common assumption in the literature, which leads to firms’ capital

stock choices being convex in their conditional expectations. With such convex capital stock

choices, the dispersion of expectations and beliefs across firms plays a prominent role: greater

dispersion leads to higher aggregate capital stock, while more compressed beliefs lead to lower

aggregate capital stock. Uncertainty shocks in the form of a rise in the variance of noise in the

signal result in a more compressed distribution of firm beliefs, depressing aggregate capital and

output. To demonstrate these effects, I first present a simple analytical model that captures

the key mechanisms at play. I then extend the analysis to a quantitative equilibrium business

cycle model and show that the insights from the analytical model carry over. This paper offers

a new perspective on the sources and consequences of economic uncertainty by highlighting the

importance of noisy productivity signals in shaping firm behavior and aggregate outcomes.

Related Literature The idea that links uncertainty to business cycles and especially to

the slow rate of recovery after slumps dates back to Keynes (1936) and was further formulated

by Bernanke (1983) in his study of investment fluctuations.6 In the recent equilibrium business

5Figure 1 shows dynamics of the belief distribution (the blue and light blue lines, alongside the true productivity
distribution (the yellow line) and the capital choice by firms (the red line).

6As stated in The General Theory, Ch. 22, “it might be possible to achieve a recovery without the elapse of any
considerable interval of time [. . . ]. But, in fact, this is not usually the case [. . . ]. It is the return of confidence, to
speak in ordinary language, which is so insusceptible to control in an economy of individualistic capitalism. This
is the aspect of the slump which bankers and business men have been right in emphasizing...”
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Figure 1: Cross-sectional Distribution of Beliefs and Capital Choice

cycle literature, the seminal contribution of Bloom (2009) studies a business cycle model in

which individual firms face time-varying volatility shocks to their own productivities. He shows

that uncertainty shocks, defined as a shock to the variance of the idiosyncratic productivity

process, generate bust-boom cycles. A rise in stochastic volatility, in a setting where firms face

nonlinear costs of factor adjustment, deters investment as firms adopt a “wait and see” policy in

response to the shock. In this class of models with exogenous shocks to volatility, the aggregate

effects tend to be short-lived. However, Bachmann et al. (2013) argue that the quick recovery

following the wait-and-see effect is not consistent with U.S. data. In particular, they document

persistent and prolonged dynamics following a rise in their measure of uncertainty. I contribute

to this literature by developing a tight link between uncertainty at the start of a recession and

the gradualism of the subsequent recovery.

My paper contributes to the literature that examines firm-level uncertainty using microdata

and its aggregate implications by simulating a quantitative model. For example, Vavra (2014)

shows that the real effect of a monetary shock decreases as the average level of uncertainty across

firms increases in a price-setting model with stochastic volatility in firm-level productivity. Baley

and Blanco (2018) adapt a Bayesian approach as in my paper for a price-setting model and show

that the dispersion of firm-level uncertainty matters for the real effect of a monetary shock. The

direction of these studies is also shared by Ilut and Saijo (2018), who investigate a business cycle

amplification mechanism with ambiguity. My paper differs as it studies the dynamics of capital

misallocation due to time-varying uncertainty.
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Orlik and Veldkamp (2015) study an alternative origin of uncertainty fluctuations in a model

of Bayesian learning. Uncertainty is associated with doubt about the true model of the economy.

In particular, they argue that small increases in the awareness of tail risk is important in driving

fluctuations of uncertainty.7 In contrast, the distribution of outcomes is known to firms in my

paper. What is unknown is their own actual realizations of outcomes.

In recent years, interest in uncertainty and learning over the business cycle has increased.8

For example, Fajgelbaum et al. (2017) show a mechanism by which recessions increase uncer-

tainty in a model of irreversible investment. Saijo (2017) builds a model with nominal rigidities

and proposes a mechanism for endogenous fluctuations in uncertainty. Both papers analyze

fluctuations in the amount of information available to agents. In recessions, economic activity

contracts, and this reduces the flow of information and increases uncertainty. Neither this feed-

back nor real and nominal rigidities is necessary in my model for uncertainty shocks to produce

recessions. Furthermore, unlike these papers, my model has time-varying distribution of firms,

which is part of the aggregate state. Following uncertainty shocks, it delivers endogenous fluc-

tuations in TFP through changes in the degree of misallocation of capital and labor, leading

to a rapid downturn and a slow recovery in the presence of asymmetric firm decision rules, as

discussed by Ilut, Kehrig, and Schneider (2017).

This work is also related to existing papers that study the role of the allocation of re-

sources across heterogeneous agents and its impact on aggregate productivity (e.g., Restuccia

and Rogerson, 2008). Hsieh and Klenow (2009) argue that misallocation of resources has a

substantial impact on aggregate TFP in India and China. More recently, the role of financial

frictions in generating capital misallocation and its aggregate implications have been studied in

several quantitative environments (Khan and Thomas, 2013; Buera and Moll, 2015; Buera et

al., 2011). Instead of financial frictions, I study the role of information frictions in causing a

loss in aggregate productivity through the misallocation of resources. David et al. (2016) also

study misallocation in a model of learning at the firm level. However, my paper looks at the

implications of misallocation over business cycles, while they focus on a stationary equilibrium.

I also contribute to the empirical literature on uncertainty. Several proxies have been devel-

oped within the literature, ranging from the volatility of GDP or stock prices to disagreement

and forecast errors in survey data, as uncertainty is difficult to identify. For example, Leahy

and Whited (1996) construct a measure of uncertainty from the volatility of stock returns for

individual firms. Guiso and Parigi (1999) use survey data on demand forecasts by Italian firms

to infer the level of uncertainty facing these individual firms.9 Bond et al. (2005) consider

7See also Kozlowski, Veldkamp and Venkateswaran (2018).
8There are papers that examine economic environments wherein agents learn from market outcomes. For

example, Van Nieuwerburgh and Veldkamp (2006) and Caplin and Leahy (1993) study the relation between the
flow of information and economic activity in models without uncertainty shocks.

9Guiso and Parigi (1999) use 3-point probability distributions from the Bank of Italy Survey of Investment
in manufacturing (SIM) and Morikawa (2013) uses 2-point distributions from his original survey and finds that
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several measures including volatility in monthly consensus earnings forecasts, the variance of

forecast errors for consensus forecasts and the dispersion in earnings forecasts across market

analysts. To estimate the impact of uncertainty on investment, they use panel data and look at

the cross-sectional features of firm uncertainty and the investment behavior of individual firms,

rather than the uncertainty distribution’s cyclical properties as in Bloom et al. (2018), Kehrig

(2015) and Vavra (2014). In this paper, I use data on earnings forecasts by individual analysts as

in Bond et al. (2005); however, I examine not only the average cross-sectional distribution but

also the cyclical changes of this uncertainty measure. Bachmann et al. (2013) use survey data

from the IFO Business Climate Survey, which asks forecasters about their own future prospects

rather than about macroeconomic variables such as GDP, to extensively study various measures

of uncertainty. I also use forecast disagreement to measure uncertainty.

My model builds on Jovanovic’s (1982) learning model, which has been applied to study a

broad range of topics such as the disparate response of heterogeneous firms to aggregate shocks

(Li and Weinberg, 2003; Alti, 2003) and the differential sensitivity of product switching behavior

among exporters learning about their demand (Timoshenko, 2015).

The rest of the paper is organized as follows. Section 2 reports empirical results. In

Section 3, the model of heterogeneous firms with learning is developed. Section 4 presents my

quantitative results, both stationary equilibrium results matched against a variety of micro-level

moments and the business cycle results in the presence of aggregate uncertainty. Section 5

concludes.

2 Empirics

In this section, I focus on firm-level uncertainty and show that it varies not only in the cross-

section but also across time. I first build an annual panel dataset of ex-ante forecast dispersion

and ex-post forecast errors on firms’ earnings, using data from the I/B/E/S and Compustat.

I then show that the level of the forecast-based uncertainty differs substantially across firms.

Consistent with existing measures, these new measures show that the average level of uncertainty

across firms is countercyclical. In particular, a sharp rise in uncertainty is observed during the

Great Recession and the Covid-Pandemic Recessions. Below, I explain my measures of firm-level

uncertainty, its cross-sectional features and cyclical properties.

uncertainty related to the tax system and trade policy matters for firms’ capital investment and overseas activities.
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2.1 Data: Measuring firm-level uncertainty

The first data source that I use is the I/B/E/S, which contains a point forecast of earnings

per share (EPS) made by an individual analyst. For each firm in the data, a researcher can

calculate the cross-analyst dispersion of earnings forecasts and I use it as a measure of firm-level

uncertainty, forecast dispersion. Specifically, I construct two measures of firm-level uncertainty

based on forecast dispersion. The first one is the standard deviation of earnings forecasts across

analysts (= FdisSD). I then normalize it by the average earnings forecast to obtain the second

measure (= FdisCV). Formally, this is calculated as

FdisCV
t =

FdisSDt
|Et(Rt+1)|

,

where |Et(Rt+1)| denotes the absolute value of the median earnings forecast—a consensus fore-

cast.

One distinctive feature of these uncertainty measures based on forecast dispersion is that

they contain ex-ante information, in contrast to other uncertainty measures used in previous

studies. Ex-ante information is attractive as we can elicit the level of uncertainty perceived by

agents when they make decisions. It is also attractive as it allows us to directly monitor in real

time the level of uncertainty faced by firms, before actual earnings outcomes are realized. Since

the I/B/E/S database also contains actual earnings records, I can further calculate forecast

errors from the earnings forecasts.10

When calculating forecast errors, I consider two different measures: Return on Assets

(ROA)-based (= FEroa) and dollar-based (= FEpct) measures. FEroa is the percentage point

deviation of the realized ROA from the consensus ROA forecast, as shown below.

FEroa
t =

|(Rt − Et(Rt+1))| ∗ CSHOt

ATt−1

CSHOt denotes the number of outstanding common shares during year t, and ATt−1 is total

assets at the beginning of year t, both taken from Compustat. Next, the dollar-based forecast

error, FEpct, can be simply calculated as,

FEpct
t =

|Rt − Et(Rt+1)|
|Et(Rt+1)|

.

I link the I/B/E/S and Compustat databases into a firm-by-year panel from 1976 to 2022,

and the resulting dataset is an unbalanced panel of 11,938 firms, each with 6.5 data points

on average. More details on variable construction are presented in Appendix. In addition to

10Earnings that can be obtained from the I/B/E/S are so-called street earnings, which are different from
earnings that can be obtained from Compustat using the generally accepted accounting principles (GAAP).
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the uncertainty measures, (FdisSD, FdisCV, FEroa, FEpct), my panel dataset contains firm

performance measures such as ROA and other firm characteristics including size, age and analyst

coverage. The top panel of Table 2 reports the summary statistics of the panel dataset, showing

heterogeneity across firms in terms of performance and characteristics.

2.2 Cross-Sectional Properties: Uncertainty Varies Across Firms

In Table 2, I report the summary statistics of the uncertainty measures defined above:

FdisSD, FdisCV, FEpct and FEroa, all expressed in percentage (middle and bottom panels). As

shown in the middle panel (rows 9 to 10), it is evident that forecast-dispersion-based uncertainty

measures exhibit a substantial heterogeneity across firms, regardless of whether the measure is

normalized or not by consensus forecasts. In the bottom panel of the table (rows 11 to 12),

forecast-error-based uncertainty measures are reported. It follows that analysts tend to make

forecast errors; at median, they under- or over-estimate EPS by about 30% (FEpct). For FEroa,

the mean forecast error in terms of ROA is 5.1% while the median is 1.6%.

Table 3 shows the sample mean and the standard deviation of the key variables for the

subsamples of firms distinguished by uncertainty level. Specifically, I divide the sample in 2012

by a threshold uncertainty level which is implied by the mean of FdisCV , and the statistics in

Table 3 are separately reported by low and high uncertainty groups. Firms with low uncertainty

tend to be larger in size (sales, total assets, or the number of employees), to be older and more

likely to survive longer. They also have greater analyst coverages (measured by the number of

analysts who report forecasts).

Together, Tables 2 and 3 clearly illustrate the observed heterogeneity of firm-level un-

certainty, which remains substantial across different measures. As will be discussed below,

uncertainty varies not only across firms but also over business cycles.

2.3 Cyclical Properties: Uncertainty Varies Across Time

The recent development in the uncertainty literature has highlighted that macro-, industry-,

and firm/establishment-level uncertainty increase in recessions (e.g. Bloom et al., 2018). Cyclical

variation of uncertainty can be observed in Figures 2 and 3. Figure 2 shows how the distribution

of firm-level uncertainty evolved during the Great Recession and the Covid-Pandemic recession,

while the historical co-movements of uncertainty measures with GDP growth are plotted in Fig-

ure 3. In this sub-section, I investigate whether this countercyclicality holds for the uncertainty

measures based on earning forecasts more formally. Moreover, by exploring how the firm-level

uncertainty distribution evolves over time, I document the empirical regularity of changes in

its dispersion and skewness. A set of stylized facts include: (1) the average level of firm-level

uncertainty is countercyclical, (2) the dispersion of firm-level uncertainty distribution is counter-

cyclical, and (3) the skewness of firm-level uncertainty distribution is procyclical. These results
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are summarized in Table 4.

In the top panel of Table 4, columns (1) and (2) report that the average level of firm-

level uncertainty, measure by forecast dispersion and forecast error, are negatively correlated

with GDP growth. This countercyclicality also holds for the dispersion of these uncertainty

measures, as shown in columns (3) and (4). In contrast, columns (5) and (6) report a positive

relationship between the skewness of the firm-level uncertainty distribution and GDP growth.

As shown in the bottom panel of the table, these findings remain robust when I instead use

HP-filtered GDP.11 On the cyclicality of dispersion and skewness of the firm-level uncertainty

distribution, it is noticeable that the dynamics of the distribution appears to be driven by the

left tail—the low uncertainty firms. This pattern of the uncertainty distribution dynamics is

also observed during the Great Recession, as in Figure 2.12

11Forecast dispersion’s countercyclicality is robust to using the standard deviation instead of the coefficient of
variation. See Appendix.

12This is somewhat different from the findings in other contexts such as the evolution of employment growth
in Ilut, Kehrig, and Schneider (2017). There, it is that low performance firms matter, whereas firms with low
uncertainty matter here and they tend to be larger in my panel data.
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Figure 2: Forecast Dispersion: Great Recession vs Covid-19 Pandemic

Note: This figure compares the distributions of forecast dispersion during the Great Recession (2007-2009) and the Covid-
19 Pandemic (2019-2021). The left panels show the Great Recession period with 2007 (dashed line, red), 2008 (solid line,
black), and 2009 (solid line, blue). The right panels show the Covid-19 Pandemic period with 2019 (dashed line, green),
2020 (solid line, orange), and 2021 (solid line, purple). The top panel plots the distributions of the log of Fdiscv across
firms and the bottom panel plots the distributions of the log of FEroa across firms.
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Figure 3: : Historical series

Note: In the first row, the left panel shows the time-series of the cross-sectional mean of the forecast dispersion
measure (Fdiscv: solid line) and the right panel shows the time-series of the cross-sectional standard deviation of
the forecast error measure (FEroa: solid line). In the middle row, the left panel shows the cross-sectional mean
of the forecast dispersion measure (Fdiscv: solid line) and the right panel shows the cross-sectional standard
deviation of the forecast error measure (FEroa: solid line. In the bottom row, the left panel shows the cross-
sectional skewness of the forecast dispersion measure (Fdiscv: solid line) and the right panel shows the skewness
of the forecast error measure (FEroa: solid line). In all panels, HP-filtered real GDP series are plotted (dashed
line).
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3 Analytical Results

I use a simple model to analyze various effects through which uncertainty impacts aggregate

output. In particular, I will present analytical results of how firms’ uncertainty about their

future productivity influences the firm’s capital choice, the distribution of capital across firms,

and aggregate output.

I consider an economy where there is a unit measure of competitive firms, each being indexed

by j with production technology yjt = zjtk
α
jtn

ν
jt, where yjt, zjt, kjt, and njt are output, pro-

ductivity, capital and labor, respectively, at time t. Firm-level productivity zjt is independently

and identically distributed across firms with zjt = eεjt , where εjt ∼ N(ε̄, σ2ε). The production

function is assumed to be diminishing returns to scale with α + ν < 1. I assume that capital

physically depreciates at a constant rate δ, leading to the following capital accumulation equa-

tion, kjt+1 = (1− δ)kjt + ijt, where ijt is gross investment at time t. The cash flow at time t is

zjtk
α
jtn

ν
jt−wtnjt− ijt, where wt is the wage rate, taken as given by the firm. At time t, the firm

observes its productivity zjt and chooses its labor njt and makes its investment decision ijt.

When investing in time t, I assume the firm forms beliefs about εjt+1 by receiving a private

signal

sjt = εjt+1 + ajt, ajt ∼ N(0, σ2). (1)

Lemma 1 The firm’s belief about εjt+1 conditional on receiving a signal sjt is as follows.

εjt+1 | sjt ∼ N(ε̃jt, ṽ) (2)

where

ε̃jt =
ṽ

σ2ε
ε̄+

ṽ

σ2
sjt (3)

ṽ = (
1

σ2ε
+

1

σ2
)−1 =

σ2εσ
2

σ2ε + σ2
. (4)

Proof. See Appendix.

As in equation (2), the conditional distribution of εjt+1 given sjt is normal with mean

ε̃jt and variance ṽ, which are the firm’s posterior mean and variance at time t, respectively.

Equation (3) shows that the firm uses Bayes’s rule to update its belief – that is, the posterior

mean is a weighted combination of the unconditional mean and the signal, each being weighted

by their relative precision. Equation (4) shows that the posterior variance ṽ is expressed as the

inverse of the overall precision of the belief. ṽ is a measure of uncertainty, which is monotonically

increasing in both σ2 and σ2ε . Just to distinguish between them, I refer to σ2 as noise and σ2ε

as volatility in the remaining analysis; though, it is clear that both σ2 and σ2ε are the drivers of

ṽ in this setup.
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Lemma 2 The dispersion of ε̃jt between firms is V ar(ε̃jt) = σ2ε − ṽ, which decreases with σ2

and increases with σ2ε .

Proof. See Appendix.

The higher the noise in the signal received by the firms σ2, the greater the uncertainty

faced by the firms ṽ, which compresses the distribution of the posterior mean ε̃jt. In contrast,

the distribution of the posterior mean ε̃jt becomes more dispersed when volatility σ2ε increases,

despite the fact that greater volatility also increases the uncertainty faced by the firms ṽ. While

both noise and volatility impact uncertainty in the same way, their effects on the distribution of

beliefs differ, which has important implications for the distribution of capital across firms and

thus aggregate output. I will examine this relationship below.

By dropping the subscript j, the firm’s objective at time t is to choose labor {nt+s}∞s=0 and

investment {it+s}∞s=0 to maximize the present discounted value of cash flow, letting r and ω be

the interest and wage rates, respectively, faced by the firm and assumed to be constant over

time.

max
{nt+s, it+s}∞s=0

Et

∞∑
s=0

1

(1 + r)s
(zt+sk

α
t+sn

ν
t+s − ωnt+s − it+s) (5a)

s.t. kt+s+1 = (1− δ)kt+s + it+s, (5b)

given an initial condition for kt. Solving the above problem will lead to the firm’s optimal choice

of capital stock, and it can be aggregated across firms to yield aggregate output.

Proposition 1 The aggregate output increases with σ2ε and decreases with σ2.

Proof. See Appendix.

As shown in the proof in Appendix, aggregate output can be expressed as follows.

log Y ≈ 1

1− ν
ε̄+

( 1

1− ν

)2 1
2
σ2ε︸ ︷︷ ︸

“Jensen effect”

+
α

1− (α+ ν)
[

1

1− ν
ε̄+ (

1

1− ν
)2
ṽ

2
]︸ ︷︷ ︸

“Oi-Hartman-Abel effect”

+
[1
2
(

1

1− ν
)2
[ α

1− (α+ ν)

]2
+

1

(1− ν)2
α

1− (α+ ν)

]
σ2ε︸ ︷︷ ︸

“Reallocation effect”

−
[1
2
(

1

1− ν
)2
[ α

1− (α+ ν)

]2
+

1

(1− ν)2
α

1− (α+ ν)

]
ṽ︸ ︷︷ ︸

“Uncertainty effect”

(6)

The first block of terms, labeled the “Jensen effect”, captures how the mean and variance of

the underlying productivity shocks influence output. Since I assume that z = eε is distributed
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log-normally, an increase in σ2ε increases the mean of z and thus aggregate output. I call this

the “Jensen effect” following Gourio (2008).13 The last two terms in the first line of equation

(6) relate to the average level of capital stock across firms. The individual firm’s optimal choice

for capital stock is written as:

log kt+1 =
1− ν

1− (α+ ν)
logE[z

1
1−ν

t+1 | ε̃, ṽ] + Const. (7)

Since I assume ν < 1, it follows ∂ log kt+1

∂ṽ > 0 due to Jensen’s inequality with respect to the

conditional expectation. The key is that the marginal product of capital is a convex function

of firm-level productivity zt. As such, greater uncertainty increases the optimal level of capital

stock at the firm level, by a mechanism similar to the Oi-Hartman-Abel effect (see Leahy and

Whited (1996), Bloom (2014), and Bloom et al. (2018)).14 Note that the Oi-Hartman-Abel

effect arises not because of the assumption of decreasing returns to scale.15 Instead, the variable

labour input with the assumption of time-to-build of investment convexifies the profit function.16

The second and third lines together address capital allocation efficiency. The second line,

which is positively scaled by σ2ε , suggests that greater actual productivity dispersion across firms

creates greater potential output gains if capital is allocated effectively. This phenomenon, termed

the reallocation effect, has an extent determined by the amount of decreasing returns to scale

as has been discussed in the literature (e.g. Gilchrist and Williams (2005) and Gourio (2008)).

Conversely, the third line, labeled the “Uncertainty effect” negatively scaled by ṽ, reflects how

higher uncertainty erodes these potential gains. The combined net influence of these two terms

on output is proportional to (σ2ε − ṽ), which Lemma 2 identifies as V ar(ε̃jt)—the dispersion

of firms’ posterior beliefs. Greater belief dispersion enhances aggregate output by improving

capital allocation and thus increases aggregate output.17 While both noise and volatility increase

individual firm uncertainty (ṽ), Lemma 2 shows their net effects on the dispersion of firms’

posterior beliefs (σ2ε − ṽ) diverge, as do their resulting impacts on aggregate output.

An increase in volatility σ2ε widens belief dispersion V ar(ε̃jt) = σ2ε − ṽ, because its direct

positive effect on σ2ε outweighs the associated rise in ṽ. As such, the “Reallocation effect” term

effectively dominates the “Uncertainty effect” term. This positive net impact from these two

13Assuming, for example, normal distribution or adjusting ε̄ to ensure mean-preserving increases in uncertainty
and volatility will eliminate the Jensen effect.

14This effect is also called the Hartman-Abel effect in the literature. See, for instance, Caballero (1991), Lee
and Shin (2000), Bloom (2001); though, it usually refers to the effect on investment under adjustment costs,
rather than the optimal level of capital stock as in this paper.

15In fact, Hartman (1972) and Abel (1983) assume constant returns to scale.
16Suppose instead that the production function can be written as yt = ztk

α
t in that capital is the only input

for production. The firm’s objective becomes Et

∑∞
s=0

1
(1+r)s

(zt+sk
α
t+s− it+s) and the optimality condition yields

αE[zt+1]k
α−1
t+1 = r+ δ. Hence, the marginal product of capital is independent of ṽ. See, for more detail, Caballero

(1991) and Lee and Shin (2000).
17As seen in Appendix, those reallocation and uncertainty effects reflect the standard covariance term between

productivity and capital (e.g. Olley and Pakes (1996); Bartelsman, Haltiwanger, and Scarpetta (2013)).
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terms, alongside the positive influences from the “Jensen effect” and the “Oi-Hartman-Abel

effect”, consequently leads to an increase in aggregate output. In contrast, an increase in noise

σ2 compresses belief dispersion V ar(ε̃jt) = σ2ε − ṽ, as σ2ε is unchanged while ṽ rises. This

leads to a negative net contribution from the “Uncertainty effect” terms, with the “Reallocation

effect” term unchanged. Overall, because the “Jensen effect” is not affected by an increase

in noise, and the negative impact from the “Uncertainty effect” term dominates the positive

“Oi-Hartman-Abel effect” term, higher noise results in a decrease in aggregate output.

The analytical results presented in this section only hold in steady state after a permanent

increase in uncertainty due to noise or volatility. Moreover, the simple model is partial equilib-

rium, which is less suited for studying business cycles with aggregate uncertainty. I thus move to

a more realistic environment with transitory shocks to noise and volatility to study whether the

above results carry on. In fact, equation (6) suggests that it is unlikely that σ2ε has an adverse

effect on aggregate output, in contrast to the recent macroeconomic literature on uncertainty.

One reason for this is that I do not assume any costs of adjusting capital stock and therefore

the real options effect is absent in the analysis above. In the literature of uncertainty and in-

vestment, adjustment costs have been playing a prominent role in generating the real options

effect that yields a negative relationship between uncertainty and investment.18 As shown in

the seminal papers by Bloom (2009) and Bloom et al. (2018), σ2ε has a negative impact on the

aggregates in the model of irreversible investment with adjustment costs, wherein firms follow

the threshold investment rules which include inaction (e.g. Abel and Eberly (1995) and Abel

and Eberly (1996)). More firms will undertake zero investment with greater σ2ε , leading aggre-

gate investment and output to decrease. I opted not to add adjustment costs in the analysis

above because adding irreversibility in the above model makes aggregation with a closed-form

solution infeasible. The real option effect can amplify the impact of uncertainty on aggregate

output and I will investigate this numerically in quantitative analysis below.

4 A Model of Bayesian Uncertainty Shocks

4.1 Production, Learning and Information

As in the previous section, I consider an infinite horizon model in discrete time with perfectly

competitive markets and there is a unit measure of competitive firms. The production function

is increasing and concave and assumed to be diminishing returns to scale as y = zkαnν , where

y, z, k, and n are output, productivity, capital and labor in each period, respectively, with

18There has been also an extensive discussion on the negative relationship between uncertainty and investment
in the literature on irreversibility. See, for instance, Bertola (1998), Pindyck (1988), Bertola and Caballero (1994),
Dixit and Pindyck (1994), among others.
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α+ ν < 1. i is gross investment in each period and the standard capital accumulation equation,

k′ = (1− δ)k + i, emerges with a constant depreciation rate of capital stock δ.

Firm-level productivity is persistent in that z = eε, where ε evolves stochastically and, as

such, relevant for firms’ investment decisions. In each period, ε remains with the current value

with probability 1− π or is redrawn from a distribution N(0, σ2ε) with probability π. ε changes

infrequently, and the timing of such changes, though not their value, is known to firms.

ε is only partially known to firms as it is not directly observed; however, firms can learn

about ε over time by observing their private signals:

s = ε+ a, where a ∼ N(0, σ2). (8)

σ represents an exogenous variance of signal errors, which is stochastic and common across

all firms: σ ∈ σ1, . . . , σN , where Pr(σ′ = σm|σ = σl) = πlm ≥ 0, and
∑N

m=1 πlm = 1 for each

l = 1, . . . , N , the only source of aggregate uncertainty in the model.

Firms can extract information about ε by accumulating the observation of s as long as they

are not hit by a reset of ε. Firms use Bayes’ law to update their beliefs: the posterior mean ε̃ and

variance ṽ are updated based on signals s, where ε̃ approaches the true value ε, while ṽ decreases

while learning continues. On the other hand, every time ε is reset, firms start their learning

afresh, leading to uncertainty cycles as in Baley and Blanco (2018) and Baley, Figueiredo, and

Ulbricht (2022).

4.2 Aggregate State

In addition to σ, which evolves stochastically over time, a non-trivial, time-varying distri-

bution of firms is a part of the aggregate state in this model economy. Firms at the beginning of

each period are identified by the mean ε̃ and variance ṽ of their beliefs about their productivity,

together with the current productivity ε and predetermined capital stock k. Thus, I summarize

the distribution of firms over (ε̃, ṽ, ε, k) using the probability measure µ defined on the Borel

algebra, S, generated by the open subsets of the product space, S = R+ ×R+ ×R×R+. Given

the distribution of firms, the aggregate state of the economy is fully summarized by (σ, µ), and

the distribution of firms evolves over time according to a mapping, Γ, from the current aggregate

state; µ′ = Γ(σ, µ).

4.3 Firm Problem

I formulate a firm’s problem recursively, given the aggregate state (σ, µ) and thus µ′ =

Γ(σ, µ). The problem consists of choosing the capital stock for the following period, k′, and the

current labor input, n. Let v(ε̃, ṽ, s, ε, k;σ, µ) be the value function of a firm:
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v(ε̃, ṽ, s, k;σ, µ) = max
n,k′

Eε|(ε̃,ṽ,s)

[
eεkαnν − ωn+ (1− δ)k − k′

+(1− π)Eσ′|σ d
(
σ′, σ, µ

)
v0(ε̃

′, ṽ′, k′;σ′, µ′)

+π Eσ′|σ d
(
σ′, σ, µ

)
v0(ε̃0, ṽ0, k

′;σ′, µ′)
]

(9)

I explain the above firm’s problem line-by-line as follows. Each firm’s profits are its output

less wage payments and investment, as shown in the first line. With probability 1 − π, in the

second line, the current productivity is maintained at the beginning of the next period, and hence

their expectation over ε′ and thus s′ are conditional on (ε̃, ṽ, s, σ). Furthermore, they discount

next period’s value by the state contingent discount factor, d (σ′, σ, µ) . The state contingent

discount factor is consistent with households decision rules in equilibrium, as will be discussed

later. With probability π, in contrast, the current productivity is lost and a new one is drawn,

independent of the current state. ε̃0 is the prior mean, which is the unconditional mean of the

distribution and thus ε̃0 = 0. ṽ0 is the prior variance and thus ṽ0 = σ2ε .

v0(ε̃, ṽ, k;σ, µ) is the beginning-of-period expected value of a firm before it observes its

private signal. Conditional on its prior belief (ε̃, ṽ), each firms takes expectations over a possible

draw of private signals s:

v0(ε̃, ṽ, k;σ, µ) = Es|(ε̃,ṽ) v(ε̃, ṽ, s, k;σ, µ). (10)

4.4 Households

There is a unit measure of identical households in this economy. Households earn labor

income by supplying a fraction of time endowment in each period, and hold their wealth as a

comprehensive portfolio of assets; firm shares of measure me and non-contingent discount bonds

mb. Period utility is given by U(C, 1−N), and β represents the subjective discount factor. The

representative household maximizes the lifetime expected discounted utility, V h, by choosing the

quantities of aggregate consumption, C, and labor supply, N , while adjusting its asset portfolio

over time. To simplify notation in the following, I use x ≡ (ε̃, ṽ, s, k) to summarize the firm

individual state.
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V h(me,mb; s, µ) = max
C,N,m′

e,m
′
b

[
U(C, 1−N) + βEs′|sV

h(m′
e,m

′
b; s

′, µ′)
]

(11)

subject to :

C + q(s, µ)m′
b +

∫
S
ρ1(x

′; s, µ) ·m′
e(d[ε̃× ṽ × s× ε× k])

≤ ω(s, µ)N +mb +

∫
S
ρ0(x; s, µ) ·me(d[ε̃× ṽ × s× ε× k]) (12)

and : µ′ = Γ(s, µ) (13)

Given the aggregate state, q(s, µ) is the discount bond price in the above problem. Re-

garding the prices of firm shares, ρ1(x
′; s, µ) denotes the dividend-exclusive prices in the current

period, and ρ0(x; s, µ) is the dividend-inclusive value of current shareholding me.

To define the competitive equilibrium of the model, let Ch(me,mb; s, µ) andN
h(me,mb; s, µ)

represent the household decision rules for consumption and labor supply. Also, let

Mh
b (me,mb; s, µ) be the decision rule for bond holding, and Mh

e (me,mb, x
′; s, µ) be the choice

of shares over the firm distribution with x′.

4.5 Recursive Equilibrium

In the following, I define recursive competitive equilibrium of the model while suppressing

the arguments of functions for simplicity.

A recursive competitive equilibrium is a set of functions,

prices : (ω, d, q, ρ0, ρ1)

quantities : (N,K,Ch, Nh,Mh
b ,M

h
e )

values : (V, V h),

that solve firm and household problems and clear the markets for assets, labor, and output:

1. {v0,v} satisfies (9) - (10), and (N,K) are the associated policy functions for firms.

2. V h satisfies (11), and (Ch, Nh,Mh
b ,M

h
e ) are the associated policy functions for house-

holds.

3. Mh
e (me,mb, x; s, µ) = µ(x) for each x ≡ (ε̃× ṽ × ε× k) ∈ S.

4. The labor and goods markets clear.
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Nh(me,mb;σ, µ) =

∫
S
N(x; s, µ) · µ(d[ε̃× ṽ × s× ε× k])

Ch(me,mb;σ, µ) =

∫
S

[
eεkαN(x;σ, µ)ν

−
(
K(x;σ, µ)− (1− δ)k

)]
· µ(d[ε̃× ṽ × ε× k])

5. Γ(σ, µ) is generated by K(ε̃, ṽ, ε, k;σ, µ), and the exogenous stochastic evolution of σ

and the evolution of firms’ belief based on the Baye’s rule, along with the aggrega-

tion of firms’ optimal choices given current state variables. The evolution of the firm

distribution is defined as follows. I define the indicator function χ(x) = 1 for x = 0

and χ(x) = 0 for x ̸= 0. I also define the probability of drawing ε′ when ε is reset by

F (ε′|σ). I then define Γ as,

µ′(ε̃′, ṽ′, ε, k′)

= (1− π)

∫
S
χ(k′ −K(ε̃, ṽ, ε, k; s, µ))µ(dε̃× dṽ × dε× dk).

µ′(ε̃′, ṽ′, ε′, k′)

= π

∫
S
F (ε′)χ(k′ −K(ε̃, ṽ, ε, k; s, µ))µ(dε̃× dṽ × dε× dk).

Using C(σ, µ) and N(σ, µ) to describe the market-clearing values of household consumption

and hours worked, it is straightforward to show that market-clearing requires that (a) the real

wage equal the household marginal rate of substitution between leisure and consumption:

w (σ, µ) =
D2U

(
C(σ, µ), 1−N(σ, µ)

)
D1U

(
C(σ, µ), 1−N(σ, µ)

) ,
that (b) firms’ state-contingent discount factors are consistent with the household marginal rate

of substitution between consumption across states:

d
(
σ′, σ, µ

)
=
βD1U

(
C(σ′, µ′), 1−N(σ′, µ′)

)
D1U

(
C(σ, µ), 1−N(σ, µ)

) .
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5 Quantitative Analysis

5.1 Parametrization

(1) Common parameters:

I assume that the representative household’s period utility is u(c, l) = log c + ηl, with η >

0 as in models of indivisible labor (e.g., Hansen (1985); Rogerson (1988)) and c and l are

consumption and leisure in each period, respectively. As seen in the previous sections, I assume

that each heterogeneous firm undertakes production via the Cobb-Douglas production function:

y = eεkαnν .

Following the approach of Bloom et al. (2018), I calibrate five key parameters to match

aggregate moments in the U.S. economy at an annual frequency. The discount factor β is set to

0.96, targeting a risk-free real rate of 4%. α is calibrated to 0.25, corresponding to an isoelastic

demand with a markup of 33%. To achieve capital and labor shares of 1/3 and 2/3 respectively,

ν is set to 0.50. The depreciation rate δ is calibrated to 0.10, matching the annual depreciation

of capital stock. Finally, the labor supply parameter η is set to 2.00, targeting average hours

worked of 1/3.

(2) Micro parameters:

The calibration of the micro parameters utilizes the data set described above in this paper (the

merged Compustat-IBES). The parameters are chosen to reflect the persistence and variabil-

ity of firm-level productivity, as well as the transition probabilities between different states of

productivity. The process for εt+1 is defined as:

εt+1 =

εt+1 ∼ N (0, σ2ε) with probability π,

εt with probability (1− π),

where s = ε + a, with a ∼ N (0, σ2), and σ ∈ {σL, σH}. The transition probabilities for σ are

given by: (
ρL 1− ρL

1− ρH ρH

)
.

π and σε are set to reproduce the yearly persistence of firm-level productivity of 0.95 and

the cross-sectional standard deviation of 0.45. We set σL to 0.28, representing the cross-sectional

average of ṽ/σ2ε = 0.41. σH is set to 0.59 to obtain σH
σL

= 2.1. The yearly transition probabilities,

pL and pH , are both set to 0.70, encapsulating both the persistence in productivity levels and

the dynamics of transitions between different uncertainty regimes. Tables 5 and 6 summarize

the calibrated parameters, their descriptions, and their values:
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5.2 Micro-level Firm Behavior

Imperfect information about total factor productivity across firms causes a misallocation of

capital and labor. Firms operating with imperfect information deviate from the optimal alloca-

tion of resources and exhibit both over- as well as undercapacity. This pattern of misallocation

is distinct from that which appears with financial frictions such as lending that is subject to

default risk (e.g., Khan, Senga, and Thomas (2016)) or a collateral constraint (e.g., Buera and

Moll (2015)).

Figure 4 presents a simulation of the learning and capital accumulation dynamics of an

individual firm. The key event in the firm’s lifecycle is a resetting of its productivity that occurs

at period 11, as evidenced by the abrupt upward shift in the dashed line in the top panel. As

a consequence of this productivity reset, the firm experiences a sudden increase in uncertainty

regarding its own productivity, as illustrated by the spike in the dashed line in the bottom panel.

Figure 4: Learning cycles from simulation

Note: This figure plots the patterns of the behavior of firms in the simulation without aggregate shocks. 1,000
firms are simulated for 200 periods, and a 20-period simulation result for one firm is shown here. The top panel
shows a series of firm productivity (dashed line), signals (star dots), and the posterior belief about it (solid line).
The middle panel shows a series of capital stocks (solid line). The dashed line corresponds to the frictionless
level of capital stock under perfect information. The bottom panel shows a series of the conditional variance of
forecasts of productivity.

The firm’s uncertainty gradually diminishes over subsequent periods as it learns about its

new productivity level, reflected in the downward slope of the dashed line post period 11. The

firm’s capital investment decisions are significantly influenced by the productivity reset. The

middle panel reveals a substantial increase in the firm’s capital stock, represented by the solid

line, immediately following the productivity reset at period 11. However, this investment is
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based on signals received during these periods that exceed the true value of the firm’s up-

dated productivity. Consequently, the firm overinvests, resulting in an excessive capital stock

relative to its actual productivity. As the firm gradually resolves uncertainty about its new

productivity level in the periods following the reset, it correspondingly adjusts its capital stock

downwards. By approximately period 20, the firm’s capital stock converges to its ”frictionless”

level, aligning with its true productivity. This simulation underscores how a sudden shift in a

firm’s productivity can lead to capital misallocation that persists due to learning frictions. Each

time productivities are reset, firms undergo a process of gradually adjusting their capital stocks

as they resolve uncertainty about their new productivity levels. This incremental adjustment

process results in periods of capital misallocation until firms’ knowledge aligns with the new

productivity reality. The simulation thus illustrates the interplay between productivity shocks,

learning, uncertainty, and capital investment dynamics at the firm level.

5.3 Business Cycle Analysis

5.3.1 Business Cycle Statistics

We now examine the business cycle implications of our model with Bayesian learning and

time-varying uncertainty. Table 1 presents the key business cycle moments from an unconditional

simulation of our model at annual frequency, comparing them with U.S. data from 1976 to 2014.

The model successfully generates business cycle fluctuations of realistic magnitude. Output

volatility in the model is 0.347%, which represents about 18% of the empirical volatility of

1.940%. While the model generates lower absolute volatility than in the data, it captures the

key qualitative features of business cycle dynamics.

Most importantly, the model reproduces the standard business cycle regularities. Consump-

tion, investment, and hours all move procyclically with output, exhibiting positive contempo-

raneous correlations of 0.388, 0.902, and 0.870, respectively. These correlations are broadly

consistent with their empirical counterparts (0.915, 0.843, and 0.847).

The model also captures the relative volatilities of key macroeconomic variables. Investment

is substantially more volatile than output, with a relative standard deviation of 7.208 compared

to 4.440 in the data. This heightened investment volatility reflects firms’ dynamic responses to

uncertainty about their productivity, as they adjust their capital stocks based on evolving beliefs.

Consumption is less volatile than output (relative volatility of 0.496 versus 0.904 in the data),

consistent with households’ desire to smooth consumption over time. Hours worked exhibits

intermediate volatility (0.902 times output volatility), somewhat lower than the empirical value

of 1.336.

A notable feature of our model is that these business cycle dynamics emerge entirely from

time-varying uncertainty in firms’ signals about their productivity. Unlike standard RBC mod-
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els that rely on aggregate TFP shocks, or the stochastic volatility models in the uncertainty

literature, our fluctuations arise from changes in the precision of information that firms re-

ceive. When signals become noisier (higher σ), firms’ beliefs about their productivity become

more compressed around the unconditional mean, leading to capital misallocation and reduced

aggregate output.

This mechanism generates endogenous persistence in economic activity. Following an un-

certainty shock, firms gradually update their beliefs as they receive new signals, creating a slow

recovery in productivity and output. This contrasts with models featuring exogenous volatility

shocks, where the recovery tends to be more rapid once uncertainty subsides.

Table 1: : Unconditional business cycle moments

US Data, 1976 to 2014 Model Simulation

x σ(x) σ(x)
σ(Y )

Corr(x, Y ) σ(x) σ(x)
σ(Y )

Corr(x, Y )

Y 1.940 1.000 1.000 0.347 1.000 1.000
C 1.850 0.904 0.915 0.172 0.496 0.388
I 8.537 4.440 0.843 2.499 7.208 0.902
N 2.592 1.336 0.847 0.322 0.902 0.870

Note: The above table shows the data and model business cycle moments of output Y , consumption C, investment I,
and hours worked N . σ(x) is the standard deviation of x, and σ(x)/σ(Y ) is the relative standard deviation to that of Y ,
and Corr(x, Y ) is the contemporaneous correlation of x with Y . The model moments are obtained from a 1,000-period
unconditional simulation using the solution of the model. All series are HP-filtered in logs with a smoothing parameter
of 100. The data used to generate the above moments are: (1) real gross domestic product (GDPCA taken from FRED),
(2) investment is real gross private domestic investment (GPDICA taken from FRED), (3) consumption is real personal
consumption expenditures (DPCERX1A020NBEA taken from FRED), and (4) hours is total nonfarm business sector hours
(HOANBS taken from FRED but anuualized).

5.3.2 Aggregate Dynamics Following a Bayesian Uncertainty Shock

To understand the aggregate implications of uncertainty shocks in our framework, we exam-

ine how the economy responds when firms suddenly face noisier signals about their productivity.

Figure 5 presents the dynamic responses of key macroeconomic variables to a Bayesian uncer-

tainty shock—specifically, an increase in σ2 that makes firms’ private signals less informative.

The responses are computed by independently simulating 2,000 economies for 60 years each. An

uncertainty shock is introduced in year 31 by imposing a high uncertainty state, and we track

the average percent deviation from pre-shock levels across all simulations.19

When the uncertainty shock hits in period 1, firms’ belief updating becomes less responsive

to their private signals. With σ2 being elevated, the signal-to-noise ratio deteriorates, causing

firms to place less weight on their noisy signals (s) and more weight on their prior belief (ε̃)

when forming their posterior belief (ε̃′).20

19In each simulation, the first 30 years evolve unconditionally. For presentation clarity, Figure 5 relabels time
periods: year 30 (pre-shock) is shown as period 0, year 31 (shock impact) as period 1, and so forth.

20From equation (3) in Section 3, the Bayesian updating rule is ε̃′ = ṽ
σ2
ε
ε̄+ ṽ

σ2 s, where ṽ =
σ2
εσ

2

σ2
ε+σ2 and ε̄ denotes

the unconditional mean. When σ2 increases, the weight on the signal ṽ
σ2 =

σ2
ε

σ2
ε+σ2 decreases.
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This reduced reliance on private signals has two important consequences. First, while

learning from signals always reduces individual uncertainty (ṽ > ṽ′), the magnitude of this

reduction is smaller when signals are noisier.21 Therefore, the average posterior variance ṽ′ is

higher in period 1 when the uncertainty shock hits than it would have been without the shock.

This elevated uncertainty following the shock is visible in the bottom right panel of Figure 5.

Second, with less weight placed on heterogeneous private signals, firms’ posterior beliefs ε̃′

become more compressed around the unconditional mean ε̄ compared to their prior beliefs ε̃.

That is, the cross-sectional variance of beliefs decreases: Var(ε̃) > Var(ε̃′). This compression

of beliefs can also be seen in the bottom right panel of Figure 5. Production and investment

decisions must then be made based on these more homogeneous, and therefore less informative,

beliefs.

Figure 5: : Aggregate Dynamics Following a Bayesian Uncertainty Shock

Note: Each panel plots the aggregate economy’s response to an uncertainty shock, which hits the economy in
period 1. The percent deviation from the variable’s pre-recession average level is shown.

Let us first examine investment decisions. Proposition 1 helps us understand how the un-

certainty shock affects investment through two opposing forces. With ṽ′ being larger on average

across firms due to noisier signals, the Oi-Hartman-Abel effect pushes investment upward—since

each firm’s optimal capital choice is convex in productivity, higher uncertainty about future pro-

21From equation (4), when a firm with prior variance ṽ receives a signal with noise σ2, the posterior variance

becomes ṽ′ =
(
1
ṽ
+ 1

σ2

)−1
= ṽσ2

ṽ+σ2 . The variance reduction is thus ṽ− ṽ′ = ṽ2

ṽ+σ2 , which decreases as σ2 increases.
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ductivity leads firms to choose larger capital stocks. However, the uncertainty effect works in

the opposite direction and dominates. With Var(ε̃′) < Var(ε̃) due to belief compression, the

aggregate capital stock based on the more compressed distribution of ε̃′ is smaller than it would

be with the more dispersed prior distribution. Additionally, this compression creates capital

misallocation: productive firms (with high true ε) have posterior beliefs pulled toward the mean

and therefore choose too little capital, while unproductive firms have beliefs pushed up toward

the mean and choose too much. These two components of the uncertainty effect—reduced ag-

gregate capital and increased misallocation—together dominate the Oi-Hartman-Abel effect,

causing investment to fall.

Production decisions through labor choices follow a similar mechanism. Labor is chosen

within the period after observing signals and updating beliefs. With ṽ′ being larger on average

across firms due to noisier signals, the Oi-Hartman-Abel effect pushes labor demand upward—

since each firm’s optimal labor choice is convex in productivity, higher uncertainty leads firms

to demand more labor. However, as with investment, the uncertainty effect dominates. With

firms’ posterior beliefs compressed around the mean (i.e., Var(ε̃′) < Var(ε̃)), the aggregate labor

demand based on the more compressed distribution of ε̃′ is smaller than it would be with the

more dispersed prior distribution. Moreover, labor is misallocated across firms: productive firms

(with high true ε) have posterior beliefs pulled toward the mean and therefore hire too little,

while unproductive firms have beliefs pushed up toward the mean and hire too much. These two

components of the uncertainty effect—reduced aggregate labor and increased misallocation—

cause employment to fall in the impact period.

The resulting output decline reflects both the direct effect of reduced factor inputs and the

efficiency loss from their misallocation. With compressed beliefs, productive firms underesti-

mate their true productivity and employ too few resources (both labor today and capital for

tomorrow), while unproductive firms overestimate their productivity and employ too many. This

misallocation manifests as a decline in total factor productivity—the economy produces less not

only because it uses fewer inputs in aggregate, but because it allocates those inputs inefficiently

across firms. The TFP panel in Figure 5 confirms this efficiency loss, showing a persistent de-

cline that reflects the ongoing misallocation as firms slowly learn their true productivity and

gradually reallocate resources.

With both labor and TFP falling, output contracts immediately, and consumption also

decline from the outset.22 This immediate co-movement of consumption and output, driven by

the direct effect of compressed beliefs on production decisions, represents a key contribution of

our Bayesian uncertainty framework to understanding business cycle dynamics.

22This contrasts sharply with models like Bloom et al. (2018) where adjustment costs and the ”wait-and-see”
effect can generate an initial consumption rise as firms pause investment, temporarily freeing up resources. In our
framework, the immediate output contraction through reduced labor demand and misallocation dominates any
resource reallocation from lower investment. Consequently, there is no consumption ”puzzle”—consumption falls
alongside output from the shock’s onset, though less sharply due to households’ consumption smoothing motives.
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A defining feature of our model is the asymmetry between the sharp initial decline and

gradual recovery. The fall is immediate because the uncertainty shock instantly affects all firms’

signals in period 1, leading to compressed beliefs, misallocated inputs, and lower output within

the same period.

The recovery, however, is remarkably gradual. Even after σ2 returns to normal, belief

compression persists. Each firm must slowly rebuild its knowledge about its true productivity

through sequential signal observations. Productive firms need multiple good signals before their

beliefs realign with their true productivity, while unproductive firms need consistently poor

signals to correct their overestimation. This learning process is inherently slow, constrained by

signal noise and Bayesian updating.

This generates the persistent dynamics visible in Figure 5. Output, investment, and employ-

ment remain depressed for many periods—not because uncertainty remains high, but because

the distribution of beliefs takes time to decompress back to its efficient dispersion. The gradual

TFP recovery particularly reflects this progressive resolution of misallocation as resources slowly

reallocate toward productive firms. This persistence, arising endogenously from information fric-

tions rather than adjustment costs or persistent shocks, distinguishes our Bayesian uncertainty

framework from existing models.

The persistence and magnitude of these contractionary effects highlight the importance of

belief dynamics in propagating uncertainty shocks through the economy. While we have focused

on our baseline calibration here, Appendix D confirms these patterns are robust across a wide

range of parameter values. Additionally, Appendix E provides a parallel analysis of volatility

shocks (σ2z), demonstrating how increased productivity dispersion affects aggregate dynamics.

6 Conclusion

I construct ex-ante measures of uncertainty for each individual firms using forecast dis-

persion among market analysts. I argue that my ex-ante measure is appealing in capturing

uncertainty perceived by agents. It is also attractive as my measure is available in real time at

the firm level so that we can use it to gauge the level of uncertainty in a timely manner. Using

my measure, I show the level of uncertainty faced by firms varies both in the cross-section and

in the time series.

I then propose a new approach to modelling uncertainty in a Bayesian way. By using a

simple theoretical framework, I show that uncertainty in a Bayesian sense operates differently

from uncertainty in a stochastic volatility sense. I demonstrate that a greater uncertainty in

a Bayesian sense leads to a more compressed belief distribution across firms, which, in turn,
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decreases the aggregate productivity and capital stock without relying on any adjustment costs

of capital or investment.

These theoretical mechanisms are quantitatively investigated in a more fully-fledged equi-

librium business cycle model and the quantitative exercises highlight a prominent role of uncer-

tainty shocks in driving aggregate fluctuations in a business cycle frequencies and the nature of

aggregate dynamics is consistent with what can be seen in data for the US economy.
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Table 2: : Descriptive Statistics

mean sd p5 p25 p50 p75 p95

Sales (mil. $) 2592.27 5890.19 29.31 183.65 612.83 2083.27 12349.06

Total assets (mil. $) 2783.71 6532.04 52.95 195.40 602.89 2119.88 13381.14

Employment (thous.) 9.34 19.24 0.09 0.59 2.31 8.20 45.50

Age 9.26 8.91 1.00 3.00 6.00 13.00 28.00

Years 17.51 12.72 2.00 7.00 14.00 25.00 45.00

Analyst coverage (#) 7.95 6.83 2.00 3.00 5.42 10.58 22.58

Leverage 0.23 0.20 0.00 0.04 0.20 0.35 0.61

ROA 1.61 12.89 -24.50 0.71 3.58 7.20 14.89

Fdis cv 39.72 65.08 1.74 5.97 14.49 38.23 196.43

Fdis sd 28.19 46.21 1.25 5.50 13.00 30.33 107.18

FE pct 53.00 108.07 0.74 4.68 16.86 52.41 225.37

FE roa 4.07 9.17 0.03 0.23 0.97 3.58 18.52

Note: The table above shows the cross-sectional moments of the firm-by-year panel. The panel data is con-
structed by merging data from Compustat, CRSP, and I/B/E/S, resulting in an unbalanced panel of 11, 938
firms between 1976 and 2022. Sales and Total assets are in millions of 2015 dollars, being deflated with GDP
deflator (USAGDPDEFAISMEI, taken from FRED)). Age is the number of years calculated from the first year
of observation. Years is the number of years during which observations can be found. Analyst coverage is the
number of analysts who reported earnings forecasts. Leverage is defined as long-term debt plus current liabilities
divided by total assets. ROA is calculated as earnings (= street earnings per share (EPS) multiplied by the
number of outstanding shares) divided by total assets. FdisCV is the coefficient of variation of earnings (EPS)
forecast dispersion across analysts, and FdisSD is the standard deviation of earnings (EPS) forecasts. FEpct

denotes the forecast error on realized earnings, while FEroa is in terms of ROA. All data are winsorized at the
1 percent level.
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Table 3: : Subsamples-Descriptive Statistics

Low High

mean sd mean sd

Sales (mil. $) 3988.71 7642.27 1313.45 3734.52

Total assets (mil. $) 4448.92 8474.57 1661.51 3734.67

Employment (thous.) 12.70 22.66 3.75 9.96

Age 14.19 10.42 9.53 8.29

Years 21.44 11.80 15.02 9.64

Analyst coverage (#) 10.84 7.78 6.57 5.66

Leverage 0.21 0.19 0.22 0.23

Note: Sales and Total assets are in millions of 2015 dollars, being deflated with
GDP deflator (USAGDPDEFAISMEI, taken from FRED)). Age is the number
of years calculated from the first year of observation. Years is the number of
years during which observations can be found. Analyst coverage is the number
of analysts who reported earnings forecasts. Leverage is defined as long-term
debt plus current liabilities divided by total assets.

Table 4: : Uncertainty fluctuates over time in a countercyclical fashion

Mean S.D. Skewness

(1) (2) (3) (4) (5) (6)

Forecast dispersion Forecast error Forecast dispersion Forecast error Forecast dispersion Forecast error

GDP growth -0.494*** -0.342** -0.430*** -0.061 0.344** 0.034

(0.291) (0.0336) (0.293) (0.0566) (2.046) (5.309)

Observations 46 46 46 46 46 46

R2 .244 .117 .185 3.8e-03 .118 1.1e-03

Mean S.D. Skewness

(1) (2) (3) (4) (5) (6)

Forecast dispersion Forecast error Forecast dispersion Forecast error Forecast dispersion Forecast error

log(GDP) -0.562*** -0.074 -0.612*** 0.052 0.538*** -0.105

(0.287) (0.0370) (0.266) (0.0587) (1.903) (5.471)

Observations 46 46 46 46 46 46

R2 .316 5.5e-03 .375 2.7e-03 .289 .011

Note: Dependent variables are the cross-sectional mean, standard deviation (SD), and skewness of the forecast dispersion measure (Fdiscv) and
forecast error measure (FEroa). They are regressed on GDP growth is calculated as the growth rate of real gross domestic product (GDPCA
taken from FRED) and log(GDP) is the HP-filtered series of real gross domestic product (GDPCA taken from FRED). Standard errors are given
in parentheses.
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Table 5: Common Parameters

Parameter Description Target Parameter Value

β Risk free real rate Real interest rate: 0.04 0.96
α Isoelastic demand Isoelastic demand with markup: 0.33 0.25
ν Capital (labour) share Capital share: 1/3 (Labour share: 2/3) 0.50
δ Depreciation rate Annual depreciation: 0.10 0.10
η Hours worked Hours worked: 1/3 2.00

Table 6: Micro Parameters

Parameter Description Source Value

π Yearly persistence of firm-level productivity Compustat-IBES 0.10
σε Cross-sectional dispersion of firm-level productivity Compustat-IBES 0.45
σL Cross-sectional average of ṽ/σ2

ε = 0.41 Compustat-IBES 0.28
σH σH/σL = 2.1 Compustat-IBES 0.59
ρL Yearly transition probability Compustat-IBES 0.70
ρH Yearly transition probability Compustat-IBES 0.70

Table 7: Unconditional Business Cycle Moments

U.S. Data, 1976 to 2022 Model Simulation

x σ(x) σ(x)
σ(Y )

Corr(x, Y ) σ(x) σ(x)
σ(Y )

Corr(x, Y )

Y 1.857 1.000 1.000 1.562 1.000 1.000
C 1.868 1.006 0.909 0.898 0.575 0.635
I 7.858 4.231 0.825 4.351 2.786 0.861
N 2.735 1.472 0.852 0.635 0.925 0.819

Note: The above table shows the data and model business cycle moments of output Y , consumption C, investment I,
and hours worked N . σ(x) is the standard deviation of x, and σ(x)/σ(Y ) is the relative standard deviation to that of Y ,
and Corr(x, Y ) is the contemporaneous correlation of x with Y . The model moments are obtained from a 1,000-period
unconditional simulation using the solution of the model. All series are HP-filtered in logs with a smoothing parameter of
100. The data used to generate the above moments are: (1) real gross domestic product (GDPCA taken from FRED), (2)
real gross private domestic investment (GPDICA taken from FRED), (3) real personal consumption expenditures (PCECCA
taken from FRED), and (4) total nonfarm business sector hours (HOANBS taken from FRED but anuualized).
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Online Appendix

A Empirics

A.1 Data Sources and Variable Construction

In this paper, I use different data sources to construct the uncertainty measures at the

firm-year level. The main data sources are summarized in Table 8: (1) Institutional Brokers

Estimate System (I/B/E/S), (2) Compustat, (3) Center for Research in Security Prices (CRSP),

and (4) OptionMetrics. In particular, earnings forecasts by analysts and the associated earnings

outcomes are mainly from the I/B/E/S. Stock market data and implied volatility data are re-

spectively from the CRSP database and the OptionMetrics. Lastly, firm accounting information

is largely taken from the Compustat database. In the following, for each data category, I explain

the specific sources and their variables step by step.

Table 8: : Firm-level uncertainty measures

Description Data Source

FdisCV Coefficient of variation of earnings forecasts across analysts I/B/E/S

FdisSD Standard deviation of earnings forecasts across analysts I/B/E/S

FEpct Percentage deviation of realized earnings from consensus forecast I/B/E/S

FElog Log deviation of realized earnings from consensus forecast I/B/E/S

FEroa Percentage point between realized ROA and consensus ROA forecast I/B/E/S+Compustat

VOL Annualized standard deviation of daily stock returns CRSP

IV Annual average of 30-day options-implied volatility OptionMetrics

V Structurally-estimated error variance using DHV (2016) approach Compustat

Company Financial Information The firm accounting and stock price data are taken from

the CRSP/Compustat Merged database (CCM). Specifically, I use the Fundamentals Annual

Database (FAD) and the Security Monthly Database (SMD). From the FAD, I take (1) SALE –

net sales, (2) AT – total assets, (3) PPEGT – gross property, plant, and equipment, (4) CSHO

– common shares outstanding, (5) EMP – employees, (6) DLC – debt in current liabilities, (7)

DLTT – long-term debt. In the structural estimation of uncertainty which will be discussed

below, I add the relevant variables from the SMD. In that, I retrieve (1) AJEXM – cumulative

adjustment factor, (2) TRFM – total return factor, and (3) PRCCM – closing stock.

To construct the sample of firms, I exclude foreign firms as well as utilities and financial

firms. In addition, I only consider firms reporting positive values for SALE, AT, PPEGT, and
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CSHO.23 Lastly, for the figures plotting sales and total assets in this paper, I deflate them

either by a GDP price implicit deflator or CPI, both taken from FRED.24 The results are robust

regardless of this choice.

Earnings Forecast Information I use the I/B/E/S summary file to get the key variables

that are required to construct the firm-level uncertainty measures based on earnings forecasting.

These variables are, (1) the standard deviation of earnings forecasts across analysts (stdev),

(2) the median earnings forecast (medest), and (3) the realized earnings records (actual).

Additionally, I use the data on the highest, the lowest, and the mean earnings forecasts (highest,

lowest, meanest), as well as on the number of analysts (numana). All these data items are

in terms of earnings per share (EPS) expressed in dollars, except numana.

Below, I summarize how to construct the forecast-based uncertainty measures at the firm

level.

1. the standard deviation of earnings forecasts across analysts

FdisSD = stdev

2. the coefficient of variation of earnings forecasts across analysts

FdisCV =
FdisSD

|medest|

3. the percentage point between the realized ROA and the consensus ROA forecast

FEroa =
|(actual−medest)| ∗ csho

at

4. the log deviation of the realized earnings from the consensus forecast

FElog = | log
(

actual

medest

)
|

5. the percentage deviation of the realized earnings from the consensus forecast

FEpct =
∣∣∣ actual
medest

− 1
∣∣∣

Once (FdisSD, FdisCV, FEROA, FElog, FEpct) are obtained for a given firm-year, I link

the dataset to other annual accounting and performance data in Compustat. When aligning the

23For non-foreign firms, I keep firms only with fic or loc is “usa” and drop those with curcd taking “cad”. For
non-utilities or financial firms, I drop firms with SIC between 4900 and 4940 or between 6000 and 6999.

24In FRED, the corresponding data codes are USAGDPDEFAISMEI and CPALTT01USA661S.
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uncertainty dataset with Compustat, I take the differences in forecasting horizon into account.

This is because analysts’ forecasts are made throughout each year t and thus there can be

different measures of uncertainty by forecast horizon s. For instance, the cross-analyst standard

deviation of forecasts is actually denoted as stdevt−s, for a given horizon s. In this regard, I

need to choose s at which forecasts and the corresponding uncertainty measures are evaluated.

To illustrate the choice of forecast horizon, I begin with an example of a specific firm,

Ford Motor Co. (ticker: F), in my panel dataset. Figure 6 reports the analysts’ forecasts on

Ford Motor Co. in different horizons. Specifically, the top panel of Figure 6 plots (highestt−s,

meanestt−s, lowestt−s, actualt−s) for t ∈ (2007, 2012) and s ∈ (−1, 10). For Ford Motor Co.,

analysts’ forecasts are typically available according to a February-to-January cycle. In other

words, the company has its end of fiscal year in December and releases annual earnings records

at the end of the following January. After an earnings announcement, analysts start forecasting

earnings for the next fiscal year and up until the next earnings announcement after 12 months,

while such forecasts are repeatedly updated and revised. Thus, s ranges from -1 to 10 (February

to January). In the bottom panel of Figure 6, I plot the corresponding forecast-based measures

across different horizons, FdisSDt−s and FEROA
t−s.

Figure 6: : I/B/E/S data example (Ford Motor Co.)

To consider alternative horizons for measuring forecasts, I examine the patterns of forecasts

across different horizons within each year. Figure 7 shows that analysts, on average, start

releasing their forecasts within 9 months from each fiscal year-end. In the meantime, forecasts

available in 11 and 12 months before the end of each year are relatively scarce. As explained in

the case of Ford Motor Co., an earnings announcement ordinarily occurs after the end of each

fiscal year and it is typically during the subsequent quarter. Once this earnings season is over,
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the release of analysts’ forecasts follows. Next, it looks less informative to use the forecasts in

a 12-month horizon when constructing the associated uncertainty measures. This is because

the number of observations dramatically falls after 11-month horizon and the resulting forecast

dispersion and forecast error are unusually large. At the 8-month forecast horizon, on the other

hand, the pattern seems to indicate that the information related to earnings is revealed and the

analysts’ forecasts are updated accordingly. That is, we observe a gradual decrease in forecast

dispersion and forecast error thereafter.

Based on these observed patterns, I consider the following three alternative forecast hori-

zons. The first one is to use the average forecasts over each firm-year and then to calculate

forecasts dispersion and forecast error. While this specification allows me to capture the fluc-

tuations of uncertainty during each year, it also restricts the exact mapping of data into the

model that is calibrated at an annual frequency. The second specification is to consider the

first month when forecasts are released. For Ford Motor Co., it corresponds to February. This

is a simple but transparent method, abstracting from any arbitrary choice of forecast horizon.

Again, the mapping into the model may not be perfect because the first month varies across

firms in the data. Lastly, as the baseline specification in this paper, I extrapolate and re-scale the

first month forecasts to one year-horizon. In this way, the annual model can be better aligned

with the empirical uncertainty measures at the firm level. To show the differences between these

three alternatives, the forecast errors based on each specification are plotted for Ford Motor Co.

in Figure 8. Although each method delivers different levels of forecast error during the sample

period, the stylized facts presented in this paper remain robust.

Figure 7: : Pattern of uncertainty by toward

39



Figure 8: : Ford example - forecast error

Note: The top panel plots the distributions of fdisp across firms in 2007 (dashed line, red),
2008 (solid line, black) and 2009 (solid line, blue). The bottom panel plots the distributions
of ferror across firms in 2007 (dashed line, red), 2008 (solid line, black) and 2009 (solid line,
blue).

Stock Market Volatility Information For realized stock-return volatility, I use the CRSP

Daily Stock database. Stock returns are obtained as the ex-dividend daily returns (retx), and

I calculate its standard deviation (SD) across all trading days for each firm-year. Specifically,

the measure of realized stock-return volatility (VOL) is given by,

VOL =
√
250 SD(retx).

To make the unit comparable to that of implied volatility, the above measure is annualized by

multiplying
√
250 to the standard deviation of stock returns.

Next, I measure option-implied volatility (IV) by using the OptionMetrics database. From

the Standardized Options Prices file, a 30-day implied volatility (impl volatility) can be re-

trieved by specifying (EXDATE - DATE ) accordingly. I then simply take the yearly average of

the implied volatility to get IV.

Structural Estimation of Uncertainty Measure As noted earlier, David, Hopenhyan,

and Venkateswaran (DHV, 2016) develop a novel identification strategy that uses stock returns

to isolate uncertainty from other channels. In particular, DHV extend a model of industry

dynamics along the line of Hopenhyan (1992) by introducing information frictions together with

stock market. In their model, the stock of a firm is traded among imperfectly informed investors

in a noisy way, as in Grossman and Stiglitz (1980) and Albagli, Hellwig, Tsyvinski (2015). Given

limited information about their fundamentals, firms make input choices while learning from their

40



stock return movements that aggregate noisy information in financial markets.

The key insight for the structural estimation in DHV (2016) is that a firm’s investment

decision will be affected by the information contained in stock returns when the firm is more

uncertain. Taking this insight into account, I consider a version of the model in DHV, by

abstracting from distortions such as fixed adjustment costs and by assuming i.i.d. shocks to

fundamentals. This approach allows me to estimate the model-implied uncertainty measure for

a given industry-year, whereas DHV focus on comparing a single cross-sectional data across

countries. As a result, I have the following equation for the uncertainty measure (V ) in the

model.
V

σ2µ
= 1− (

ρpa

ρpk
)2 (14)

ρpai,t is the correlation between stock returns and changes in fundamentals, ρpki,t is the correlation

between stock returns and investment, and σ2µ is the variance of i.i.d. innovation of the firm-level

fundamentals. The empirical strategy is to retrieve ρpai,t , ρ
pk
i,t , and σ

2
µ from my panel data, so that

I can isolate V for a given industry-year level. In the following, I describe the data construction

required for estimating the uncertainty measure following DHV.

To construct value added (y), fundamental (a), capital stocks (k), investment (i), and stock

returns (p), I use data items taken from the merged CRSP/Compustat database (SMD and

FAD). As a first step, y is the logarithm of SALE multiplied by the intermediate share of

γ = 0.5 as in DHV (2016).

yt = γ log(SALEt).

For k, the log of capital, I take PPEGT in Compustat and then deflate it by using a GDP price

implicit deflator in FRED. Given y and k, the fundamental (a) is simply calculated as,

at = yt − αkt.

As in DHV, I use α = 0.83 for the production parameter value. From PRCCM, TRFM, and

AJEXM in Compustat, stock returns (p) are given by,

pt = log

(
PRCCMt ∗ TRFMt

AJEXMt

)
− log

(
PRCCMt−1 ∗ TRFMt−1

AJEXMt−1

)
.

Next, I derive the moments in Equation 14, (ρpa, ρpk, σ2µ), and then retrieve V eventu-

ally. To do so, I specify the following autoregressive equations for firm-level stock returns (p),

fundamentals (a), and capital (k).

pj,i,t = pj,i,t−1 + µi + λt + epj,i,t

aj,i,t = aj,i,t−1 + µi + λt + eaj,i,t
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kj,i,t = kj,i,t−1 + µi + λt + ekj,i,t

Given the firm fixed effect, µi, and the year dummy, λt, I recover e
p, ea, and ek by estimating

the above equations respectively. Then the correlations are formally defined by,

ρpa ≡ Corr(ep, ea)

ρpk ≡ Corr(ep, ek).

From the cross-sectional dispersion of ea on an industry-year basis, the standard deviation of

the fundamental innovations is,

σµ ≡ SD(eai,t).

Once σ2µ, ρ
pa, and ρpk are obtained, it is straightforward to compute the implied V at the

industry-year level. The table below summarizes the statistics.

0
mean sd p5 p25 p50 p75 p95

variance 0.26 0.13 0.09 0.18 0.25 0.31 0.55
rhopk 0.12 0.43 -0.78 -0.07 0.14 0.34 0.89
rhopa -0.01 0.44 -0.85 -0.24 -0.02 0.21 0.84
V 0.04 0.05 0.00 0.01 0.03 0.06 0.16

A.2 Disagreement ≈ uncertainty?

Forecast dispersion has nice features in that (1) it is well suited to capture ex-ante uncer-

tainty perceived by agents; and (2) it is available in real time, allowing researcher and policy-

makers to monitor the level of uncertainty in a timely manner. However, forecast dispersion

reflects market analysts’ information set, not business manager’s information set. Moreover,

forecast dispersion is a measure of disagreement among market analysts. In theory, whether

disagreement measures are positively or negatively correlated with uncertainty is ambiguous.

It may be the case that all analysts hold very different views about future earnings of a firm

while they are very confident about their own view. In such a case, the relationship between

forecast dispersion and underlying uncertainty may be negative. Thus, whether we can use

dispersion-based measures as a proxy for uncertainty is an empirical question. Answering this

question is challenging because we do not directly recognize individual agent’s information and

thus uncertainty is not easily observable from the data. 25

25To conduct such an empirical exploration, we need data — not only on point forecasts made by analysts
but also on the density of each individual analyst’s. With such data, we can directly test whether the cross
sectional dispersion of point forecasts is indeed correlated with the average of individual analysts’ diffusion, say
the variance of forecasts at the individual analyst level. While such data are not available for earnings forecasters,
to proxy uncertainty about macroeconomic variables, surveys such as the Survey of Professional Forecasters (SPF)
have been widely used (see, for example, Zarnowitz and Lambros, 1987; Giordani and Söderlind, 2003; and Rich
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To address the above concern, I take the following two approaches to validate the usefulness

of forecast dispersion in measuring uncertainty at the firm level. First, I compare my forecast-

based measures to other common uncertainty measures in the literature: realized stock market

volatility and options-implied volatility. In addition to this reduce-form approach, I also compare

my uncertainty measures to that estimated from a theoretical framework of David, Hopenhayn,

and Venkateswaran (DHV, 2016). A key identification strategy in DHV is that the investment of

an uncertain firm covaries relatively more with the stock prices than its fundamentals. I extend

their empirical approach by estimating an uncertainty measure for a given industry-year in my

panel dataset. I then compare my forecast dispersion measure to this model-based estimates of

uncertainty. This is an important validation as uncertainty is not directly observable in general,

which prevents us from solely isolating uncertainty empirically. In this sub-section, I combine the

above reduced-form and structural approaches, to examine whether forecast-based uncertainty

measures, especially forecast dispersion, effectively capture the existing uncertainty at the firm

level.

A.2.1 Reduced-form approach: Stock-price-based uncertainty measures

First, I investigate how forecast-based measures are respectively related to realized stock

returns volatility and options-implied volatility, which are common measures of firm-level uncer-

tainty used extensively in previous studies. Concerning realized stock returns volatility, which

have been used in Leahy and Whited (1996) and Bloom, Bond and Van Reenen (2007), I take

daily stock returns data from the Center for Research in Securities Prices (CRSP) database. I

then calculate the realized stock market volatility (= VOL) as the annualized standard devia-

tion of daily stock returns of firms. For options-implied volatility, I take daily implied volatility

data from OptionMetrics as in Paddock, Siegel and Smith (1988), Bloom (2009), Stein and

Stone (2013), and Kellogg (2014). I obtain the options-implied volatility (= IV), measured as

the average 30-day options-implied volatility of a firm during each year.

By linking these datasets with my panel, I regress the forecast dispersion measure on the

realized stock returns volatility and the options-implied volatility. From Table 9, I find that

there is a strong positive relationship between the forecast dispersion measure and the realized

stock returns volatility and the options-implied volatility at the firm level. This relationship is

robust to including year fixed effects, industry fixed effects, firm fixed effects, and controls for

firm size and age as in columns (1) to (4) of Table 9. In columns (5) through (8), I instead regress

the forecast error measure on the above volatility measures of uncertainty. As in the case of the

forecast dispersion measure, I find a strong positive relationship among these variables. All in all,

and Tracy, 2010). For example, Zarnowitz and Lambros (1987) show a positive relationship between forecast
dispersion and uncertainty, while Rich and Tracy (2010) find little evidence in support of using disagreement to
measure uncertainty. I follow the literature in using earnings forecasts to build a proxy for firm-level uncertainty,
as in Johnson (2004), Bond at al. (2005), and Janunts (2010).
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from this reduced-form approach, my forecast-based measures of uncertainty, forecast dispersion

and forecast error, robustly covary with the existing measures of firm-level uncertainty.26

Table 9: : Forecast disagreement and forecast errors covary with realized stock market volatility
and options-implied volatility

Forecast dispersion Forecast error

(1) (2) (3) (4) (5) (6) (7) (8)

Realized stock market vol. 0.351*** 0.297*** 0.312*** 0.263***

(0.0175) (0.0223) (0.0149) (0.0195)

Options implied vol. 0.369*** 0.321*** 0.330*** 0.270***

(0.0249) (0.0343) (0.0198) (0.0283)

Year FE Y Y Y Y Y Y Y Y

Industry FE Y Y N N Y Y N N

Firm FE N N Y Y N N Y Y

Observations 77514 40353 77514 40353 68782 36586 68782 36586

R2 0.159 0.177 0.383 0.408 0.125 0.145 0.354 0.371

Note: Forecast dispersion is the coefficient of variation of earnings (EPS) forecast dispersion across analysts, calculated as Fdiscv. Forecast
error is the percentage point deviation of the realized ROA from the consensus ROA forecast, calculated as FEroa. Realized stock market
vol. is the annualized standard deviation of daily stock returns of firm, defined as VOL; and option implied vol. is the average 30-day
options-implied volatility of a firm during each year, defined as IV.

A.2.2 Structural approach: Model-based uncertainty measure

To further validate whether forecast dispersion is a good proxy for firm-level uncertainty, I

take a structural approach based on DHV (2016).27 Their key insight is that investment decisions

covary more strongly with the stock prices than fundamentals when firms are more uncertain.

While they compare uncertainty across countries in 2012, I extend their approach by estimating

uncertainty for a given industry-year in the US, and compare it to my forecast-based measures

of uncertainty. To do so, I take a version of DHV’s model wherein firm-level fundamentals is

assumed to be i.i.d., while preserving the above insight in the estimation. This approach leads

to an analytical expression for measuring uncertainty as below.

V

σ2µ
= 1− (

ρpa

ρpk
)2 (15)

where ρpai,t is the correlation between stock returns and changes in fundamentals, ρpki,t is the

correlation between stock returns and investment, σ2µ is the variance of i.i.d. innovation of the

26The results are robust to using the standard deviation instead of the coefficient of variation when I measure
forecast dispersion. See Appendix A.2.

27DHV (2016) build a model a la Grossman and Stiglitz (1980) and Albagli, Hellwig, Tsyvinski (2015), to
estimate the model parameters that determine the level of uncertainty. In particular, they estimate their model
to gauge the level of uncertainty in the US and then compare it to those in China and India.
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firm-level fundamental, and V is the measure of uncertainty. The empirical strategy is to retrieve

ρpai,t , ρ
pk
i,t , and σ

2
µ from my panel data so that I can isolate V for a given industry-year level.28

As in the reduce-form approach, I regress the forecast-based measures on the estimated

uncertainty measure in (1), and report the results in Table 10. In columns (1) through (4)

of the table, there is a positive relationship between the forecast dispersion measure and the

uncertainty measure V , when the latter is structurally estimated from the panel dataset. This

result is robust to changing the specifications including year-fixed effects, firm-fixed effects, and

firm size and age controls. Moreover, columns (5) to (8) in Table 10 report a positive relationship

between the forecast error measure and V . Again, such a relationship is robust to changing the

specifications of the regression.29

In sum, this subsection aims to establish the usefulness and validation of forecast dispersion

as a proxy for firm-level uncertainty. While forecast dispersion may not reflect underlying uncer-

tainty but rather a situation where each analyst is confident but has different views. Nonetheless,

the above results, which include both reduced-form and structural approaches; provide support

for the view that forecast dispersion is a good measure of firm-level uncertainty. The mea-

sures based on forecast dispersion computed from panel data are significantly correlated with

commonly-used proxies for firm-level uncertainty including realized stock market volatility and

options-implied volatility, and the structurally estimated uncertainty measure using a model

with information frictions.

As discussed earlier, forecast dispersion is especially informative and attractive because (1)

it is suited for capturing uncertainty perceived by agents when they make decisions and (2) the

data is available in real time. These features allow researchers and policymakers to gauge and

monitor the level of uncertainty in a timely manner, in contrast to the case for ex-post measures

of uncertainty in previous studies. In the following sub-section, I examine the cyclical properties

of such uncertainty measures to better understand the nature of uncertainty at the firm-level.

28Data constructions and summary statistics for this exercise are included in Appendix A.1.
29In DHV(2016)’s model, uncertainty is tightly related to the dispersion of the marginal revenue product of

capital. In Appendix A.4, I use my uncertainty measures to test this directly and find that all my measures
except IV robustly covary with the dispersion of the marginal revenue product of capital. I also show that the
dispersion of the marginal revenue product of capital is coutercyclical, which lines up with the recent findings of
Schelkle (2017) and Kehrig and Vincent (2018).
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Table 10: : Forecast disagreement appears to reflect uncertainty

Forecast dispersion Forecast error
(1) (2) (3) (4) (5) (6) (7) (8)

V 0.049*** 0.056*** 0.014* 0.014 0.013** 0.033*** 0.000 -0.001
(0.0628) (0.0628) (0.0960) (0.0966) (0.0465) (0.0459) (0.0749) (0.0746)

Year FE N Y Y Y N Y Y Y
Industry FE N N N N N N N N
Firm FE N N Y Y N N Y Y
Firm Control N N N Y N N N Y
Observations 33777 33777 33777 33777 29995 29995 29995 29995
R2 0.002 0.024 0.439 0.443 0.000 0.021 0.405 0.408

Note: The uncertainty measure V is retlieved from V
σ2
µ
= 1− ( ρ

pa

ρpk
)2, where where ρpai,t is the correlation between stock

returns and changes in fundamentals, ρpki,t is the correlation between stock returns and investment, σ2
µ is the variance of

i.i.d. innovation of the firm-level fundamental. See David et al. (2016) for the detail of the model. Data constructions
and summary statistics are detailed in Appendix A.1.
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A.3 Forecast disagreement is robust when standard deviation is used instead

of coefficient of variation

Forecast dispersion (C.V.) Forecast dispersion (S.D.)
(1) (2) (3) (4) (5) (6) (7) (8)

Realized stock market vol. 0.979*** 0.827*** 0.491*** 0.388***
(0.0175) (0.0223) (0.0127) (0.0138)

Options implied vol. 1.006*** 0.875*** 0.440*** 0.391***
(0.0249) (0.0343) (0.0185) (0.0219)

Year FE Y Y Y Y Y Y Y Y
Industry FE Y Y N N Y Y N N
Firm FE N N Y Y N N Y Y
Observations 77514 40353 77514 40353 77679 40444 77679 40444
R2 0.159 0.177 0.383 0.408 0.204 0.255 0.569 0.576

Note: Forecast dispersion (C.V.) is the coefficient of variation of earnings (EPS) forecasts across analysts, calculated as FdisCV . Forecast
dispersion (S.D.) is the standard deviation of earnings (EPS) forecasts across analysts, calculated as FdisSD. Realized stock market vol. is
the annualized standard deviation of daily stock returns of firm, defined as VOL; and option implied vol. is the average 30-day options-
implied volatility of a firm during each year, defined as IV.
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A.4 Sub-sample analysis by share price and uncertainty

Low share price High share price
mean sd mean sd

Sales (mil. $) 1371.67 3775.58 4807.24 8011.02
Total assets (mil. $) 1441.62 4052.43 5262.84 9037.53
Employment (thous.) 5.43 13.11 16.62 25.66
Age 7.43 7.62 12.63 10.05
Years 14.08 10.94 23.83 13.33
Analyst coverage (#) 5.94 5.03 11.65 8.06
Leverage 0.23 0.21 0.22 0.17
ROA -0.90 14.73 5.65 7.61
Forecast dispersion (C.V.) 51.53 72.72 18.29 40.15
Forecast dispersion (S.D.) 0.30 0.49 0.24 0.41
Forecast error: ROA (pc. deviation) 5.64 10.84 1.22 3.29
Forecast error: EPS (pc. deviation) 0.71 1.25 0.20 0.52
Forecast error: EPS (log deviation) 0.44 0.54 0.18 0.32

Note: The Table above shows the sample mean and the standard deviation of the key variables for
the subsamples of firms distinguished by share prices. Specifically, I divide the sample in 2012 by the
cross-sectional mean share price and the statistics are separately reported by low and high share price.
Sales and Total assets are in millions of 2010 dollars. Age is the number of years calculated from the
first year of observation. Years is the number of years during which observations can be found. Analyst
coverage is the number of analysts who reported earnings forecasts. Leverage is defined as long-term
debt plus current liabilities divided by total assets. ROA is calculated as earnings (= street earnings
per share (EPS) multiplied by the number of outstanding shares) divided by total assets. Forecast
dispersion (C.V.) is the coefficient of variation of earnings (EPS) forecast dispersion across analysts.
Forecast dispersion (S.D.) is the standard deviation of earnings (EPS) forecasts. Forecast error: ROA
(pc. deviation) is the percentage point between the realized ROA and the consensus ROA forecast.
Forecast error: EPS (pc. deviation) denotes the percentage deviation of the realized earnings from
the consensus forecast. Forecast error: EPS (log. deviation) denotes the log deviation of the realized
earnings from the consensus forecast. All data are winsorized at the 1 percent level.
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Table 11: : High-low share price subsamples

Mean S.D. Skewness
(1) (2) (3) (4) (5) (6)

Low share price High share price Low share price High share price Low share price High share price

GDP growth -0.438*** -0.415*** -0.376*** -0.392*** 0.360** 0.236
(40.82) (30.91) (33.39) (54.82) (2.165) (8.470)

Observations 46 46 46 46 46 46
R2 .192 .172 .142 .153 .13 .056

Mean S.D. Skewness
(1) (2) (3) (4) (5) (6)

Low share price High share price Low share price High share price Low share price High share price

GDP growth -0.532*** -0.596*** -0.340** -0.392*** 0.498*** 0.392***
(0.313) (0.215) (0.230) (0.323) (1.215) (4.686)

Observations 46 46 46 46 46 46
R2 .284 .356 .115 .154 .248 .154

Note: Dependent variables are the cross-sectional mean, standard deviation (SD), and skewness of the forecast dispersion measure (Fdiscv) and forecast error measure
(FEroa). They are regressed, group by group, on GDP growth is calculated as the growth rate of real gross domestic product (GDPCA taken from FRED). Standard errors
are given in parentheses.

Table 12: : High-low uncertainty subsamples

Mean S.D. Skewness
(1) (2) (3) (4) (5) (6)

Low share price High share price Low share price High share price Low share price High share price

GDP growth -0.541*** -0.406*** -0.477*** -0.285* 0.137 0.386***
(11.07) (89.40) (8.294) (24.14) (0.501) (1.749)

Observations 46 46 46 46 46 46
R2 .292 .165 .228 .081 .019 .149

Mean S.D. Skewness
(1) (2) (3) (4) (5) (6)

Low share price High share price Low share price High share price Low share price High share price

GDP growth -0.654*** -0.437*** -0.499*** -0.236 0.502*** 0.416***
(0.200) (0.591) (0.208) (0.280) (2.223) (1.220)

Observations 46 46 46 46 46 46
R2 .428 .191 .249 .055 .252 .173

Note: Dependent variables are the cross-sectional mean, standard deviation (SD), and skewness of the forecast dispersion measure (Fdiscv) and forecast error measure
(FEroa). They are regressed, group by group, on GDP growth is calculated as the growth rate of real gross domestic product (GDPCA taken from FRED). Standard errors
are given in parentheses.
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Figure 9: : Time-series by share price subsamples

Note: The top (bottom) four panels are the series of the cross-sectional mean (standard deviation). About the top
(bottom) fours panel, the top left panel shows the cross-sectional mean (standard deviation) of forecast dispersion
fdiscv for firms with high share prices (solid line, red) and for firms with low share prices (dotted line, blue). The
top right panel shows the cross-sectional mean (standard deviation) of forecast dispersion fdissd for firms with
high share prices (solid line, red) and for firms with low share prices (dotted line, blue). The bottom left panel
shows the cross-sectional mean (standard deviation) of forecast error feroa for firms with high share prices (solid
line, red) and for firms with low share prices (dotted line, blue). The bottom right panel shows the cross-sectional
mean (standard deviation) of forecast error fepct for firms with high share prices (solid line, red) and for firms
with low share prices (dotted line, blue). In all panels, HP-filtered real GDP series are plotted (dashed line,
black).
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Figure 10: : Time-series by uncertainty subsamples

Note: The top (bottom) four panels are the series of the cross-sectional mean (standard deviation). About the top
(bottom) fours panel, the top left panel shows the cross-sectional mean (standard deviation) of forecast dispersion
fdiscv for firms with high uncertainty (solid line, red) and for firms with low uncertainty (dotted line, blue). The
top right panel shows the cross-sectional mean (standard deviation) of forecast dispersion fdissd for firms with
high uncertainty (solid line, red) and for firms with low uncertainty (dotted line, blue). The bottom left panel
shows the cross-sectional mean (standard deviation) of forecast error feroa for firms with high uncertainty (solid
line, red) and for firms with low uncertainty (dotted line, blue). The bottom right panel shows the cross-sectional
mean (standard deviation) of forecast error fepct for firms with high uncertainty (solid line, red) and for firms
with low uncertainty (dotted line, blue). In all panels, HP-filtered real GDP series are plotted (dashed line, black).
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A.5 The marginal revenue products of capital covaies with uncertainty at

the industry level

Forecast dispersion Forecast error V Vol IV

(1) (2) (3) (4) (5)

SD(MPK) 0.051*** 0.100*** 0.095*** 0.063*** 0.009

(0.0176) (0.00177) (0.00263) (0.00491) (0.00877)

Year FE Y Y Y Y Y

Industry FE Y Y Y Y Y

Firm FE

Observations 7862 7861 4385 7859 4645

R2 0.304 0.265 0.349 0.652 0.657

Note: The above table reports an industry-by-year panel regression. The dependent variable in each column are:
(1) the coefficient of variation of earnings (EPS) forecasts across analysts, calculated as FdisCV; (2) the standard
deviation of earnings (EPS) forecasts across analysts, calculated as FdisSD; (3) the structurally-estimated error
variance using DHV (2016) approach V; (4) the realized stock market volatility, measured as the annualized
standard deviation of daily stock returns of firm, defined as VOL; and (5) the option implied volatility, measured
as the average 30-day options-implied volatility of a firm during each year, defined as IV. They are regressed on
the cross-sectional standard deviation of log(y/k) for a given industry-year, with year fixed effects and industry
fixed effects.

A.6 Cyclicality of the marginal revenue products of capital

Mean S.D. Skewness
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Recession -0.214 -0.413*** -0.007
(0.00233) (0.000894) (0.00270)

log(GDP) 0.387*** -0.035 -0.213
(0.346) (0.155) (0.416)

GDP growth 0.385*** 0.429*** -0.151
(0.338) (0.136) (0.410)

Observations 45 45 45 45 45 45 45 45 45
R2 .046 .15 .148 .17 1.2e-03 .184 5.4e-05 .046 .023

Note: The above table regress the cross-sectional mean, standard deviation, and skewness measure of log(y/k) for a given year on
the share of quarters within a year (=recession), HP-filtered log GDP series, and GDP growth rate. The underlying samples come
from the panel dataset constructed in the main text.
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A.7 Sales growth rates are negatively correlated with uncertainty

As shown in Column (1), sales growth rate is negatively associated with the coefficient of

variation of analysts forecasts, even after controlling for firm size and age, year fixed effects, and

firm fixed effects. The table also shows that the negative relationship is pervasive when other

forecast-based measures of uncertainty are considered.

FdisCV FdisSD FE roa FE pct
(1) (2) (3) (4)

uncertainty measure -0.060*** -0.046*** -1.101*** -0.053***
(0.00312) (0.00829) (0.0516) (0.00235)

Firm size -0.198*** -0.195*** -0.207*** -0.197***
(0.00393) (0.00388) (0.00379) (0.00395)

Firm age -0.148*** -0.157*** -0.131*** -0.145***
(0.000924) (0.000899) (0.000868) (0.000880)

Year FE Y Y Y Y
Firm FE Y Y Y Y
Observations 67183 67287 66578 66366
R2 .291595 .2957627 .3060571 .3015976
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A.8 Predicting future economic activity

To add a further validation of the uncertainty measures constructed in this paper, I explore

how the uncertainty measures based on earnings forecasts predict future economic activity, and

compare their performance to other common measures of uncertainty. This involves estimating

the following regression equation.

yt+h = α+ β1σt +
h+1∑
i=1

γiyt−i + εt+h (16)

yt+h denotes economic activity with h forecast horizon from year t, σt is one of the uncertainty

measures that I consider, and εt+h is the error term. For the uncertainty measures, I include

one additional measure of firm-level uncertainty, the conditional heteroskedasticity of firm-level

sales which is estimated from a GARCH(1, 1) process in my panel data. Lastly, the model-based

measure of uncertainty in Section 1.3.2 is also considered.

According to Table 13, when uncertainty increases as represented by these measures, HP-

filtered GDP will slow-down. If we instead use GDP growth for y, the results are similar and

robust (Table in the appendix). The significance is weaker in predicting economic activity at

the two-year horizon relative to the one-year horizon, and the predictive power of the assumed

GARCH process on firm-level sales is less robust when compared to other uncertainty measures.

Notice also that the uncertainty measure based on forecast errors is not available in real time

as it has to wait until the earnings outcome is revealed, while the forecast dispersion measure is

available in real time.

Table 13: : Predicting future economic activity with uncertainty measures

Current year Next year
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Fdis CV -0.819*** -0.150
(-5.87) (-0.61)

FE pct -0.586*** -0.411*
(-3.54) (-1.89)

Vol -0.362* -0.443*
(-1.86) (-2.00)

IV -0.378** -0.419*
(-2.12) (-1.98)

Garch -0.189 0.329*
(-1.09) (1.73)

VIX 0.347** 0.344*
(2.09) (1.80)

Observations 27 27 27 27 27 27 26 26 26 26 26 26
R2 .711 .534 .373 .397 .314 .394 .11 .221 .233 .232 .203 .211
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B Analytical Results

B.1 Proofs

Proof of Lemma 1. If x and y have a bivariate normal distribution(
x

y

)
∼ N

((
x̄

ȳ

)
,

(
σ2x σxy

σxy σ2y

))
,

the conditional distribution of x given y is normal with mean and variance as follows:

x | y ∼ N(x̄+
σxy
σ2y

(y − ȳ), σ2x −
(σxy)

2

σ2y
).

Since x = ε, y = ε+a, x̄ = ȳ = ε̄, σ2x = σ2ε , σ
2
y = σ2ε +σ

2, and σxy = Cov(ε, s) = Cov(ε, ε+a) =

V ar(ε) + Cov(ε, a) = σ2ε , the firm’s conditional expectation can be written as

ε̃jt | sjt ∼ N(ε̄+
σ2ε

σ2ε + σ2
(sjt − ε̄), σ2ε −

σ2εσ
2
ε

σ2ε + σ2
).

Simplifying the expression further leads to the conditional mean and variance as follows.

ε̄+
σ2ε

σ2ε + σ2
(sjt − ε̄) =

(
1− σ2ε

σ2ε + σ2
)
ε̄+

σ2ε
σ2ε + σ2

sjt =
σ2

σ2ε + σ2
ε̄+

σ2ε
σ2ε + σ2

sjt

=
ṽ

σ2ε
ε̄+

ṽ

σ2
sjt, where ṽ =

σ2εσ
2

σ2ε + σ2
.

and

σ2ε −
σ2εσ

2
ε

σ2ε + σ2
= σ2ε(1−

σ2ε
σ2ε + σ2

) = σ2ε
σ2

σ2ε + σ2
= ṽ.

This proves the lemma in the main text.

Proof of Lemma 2.

V ar(ε̃jt) =
( ṽ
σ2
)2
V ar(sjt) =

( σ2ε
σ2ε + σ2

)2
(σ2ε + σ2) =

σ2εσ
2
ε

σ2ε + σ2

=
σ2εσ

2
ε + σ2εσ

2

σ2ε + σ2
− σ2εσ

2

σ2ε + σ2
= σ2ε − ṽ.
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To examine how V ar(ε̃jt) varies with σ
2:

d

dσ2
V ar(ε̃jt) =

d

dσ2
(σ2ε − ṽ) = − dṽ

dσ2

= − d

dσ2

(
σ2ε · σ2

σ2ε + σ2

)
= − σ4ε

(σ2ε + σ2)2
.

Since σ4ε > 0 (assuming σ2ε > 0) and (σ2ε + σ2)2 > 0 for all σ2 ≥ 0 and σ2ε > 0, we have:

d

dσ2
V ar(ε̃jt) = − σ4ε

(σ2ε + σ2)2
< 0.

Therefore, V ar(ε̃jt) is strictly monotonically decreasing in σ2.

Similarly, to examine how V ar(ε̃jt) varies with σ
2
ε :

d

dσ2ε
V ar(ε̃jt) =

d

dσ2ε
(σ2ε − ṽ) = 1− dṽ

dσ2ε

= 1− d

dσ2ε

(
σ2ε · σ2

σ2ε + σ2

)
= 1− σ4

(σ2ε + σ2)2
.

To determine the sign, note that:

1− σ4

(σ2ε + σ2)2
=

(σ2ε + σ2)2 − σ4

(σ2ε + σ2)2
=
σ4ε + 2σ2εσ

2

(σ2ε + σ2)2
.

Since the numerator σ4ε+2σ2εσ
2 > 0 (assuming σ2ε > 0) and the denominator (σ2ε+σ

2)2 > 0,

we conclude:

d

dσ2ε
V ar(ε̃jt) > 0.

Therefore, V ar(ε̃jt) is strictly monotonically increasing in σ2ε .

Proof of Proposition 1. The firm’s objective at time t is to choose labor {njt+s}∞s=0

and investment {ijt+s}∞s=0 to maximize the present value of cash flow. Letting r be the interest

rate faced by the firm and assumed to be constant over time.

max
{njt+s, ijt+s}∞s=0

Et

∞∑
s=0

1

(1 + r)s
(zjt+sk

α
jt+sn

ν
jt+s − ωt+snjt+s − ijt+s) (17a)

s.t. kjt+s+1 = (1− δ)kjt+s + ijt+s, (17b)

given an initial condition for kjt.

Taking the first order condition with respect to njt yields νzjtk
α
jtn

ν−1
jt = ωt. This can be
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combined with (17a) to rewrite the optimization problem as

max
{ijt+s}∞s=0

Et

∞∑
s=0

1

(1 + r)s
[
(1− ν)

( ν
ω

) ν
1−ν

z
1

1−ν

jt+sk
α

1−ν

jt+s − ijt+s

]
(18a)

s.t. kjt+s+1 = (1− δ)kjt+s + ijt+s, (18b)

given an initial condition for kjt.

The first order condition is

α
( ν
ω

) ν
1−ν

E[z
1

1−ν

jt+1 | ε̃jt, ṽ]k
α−1+ν
1−ν

jt+1 = r + δ. (19)

Dropping firm subscripts for notational simplicity, the relationships derived apply to all

firms. Rearranging equation (19) and taking log leads to

log kt+1 =
ν

1− (α+ ν)
log
( ν
ω

)
+

1− ν

1− (α+ ν)
logE[z

1
1−ν

t+1 | ε̃, ṽ]

− 1− ν

1− (α+ ν)
log

(r + δ)

α
. (20)

Recall z = eε is log normally distributed, as ε has the normal distribution with mean ε̄ and

variance σ2ε . Since the conditional expectation of z
1

1−ν

t+1 can be written as

E[z
1

1−ν

t+1 | ε̃, ṽ] = exp

(
1

1− ν
ε̃+

1

2

(
1

1− ν

)2

ṽ

)
,

the second term in equation (20) is

logE[z
1

1−ν

t+1 | ε̃, ṽ] = 1

1− ν
ε̃+

1

2

(
1

1− ν

)2

ṽ,

which leads to the following capital choice equation:

log kt+1 =
ν

1− (α+ ν)
log
( ν
ω

)
+

1

1− (α+ ν)

[
ε̃+

1

2

(
1

1− ν

)
ṽ

]
− 1− ν

1− (α+ ν)
log

(r + δ)

α
. (21)

Therefore, we have the joint distribution as follows:(
log z

log k

)
∼ N

((
E(log z)
E(log k)

)
,

(
Var(log z) Cov(log z, log k)

Cov(log z, log k) Var(log k)

))
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, where the mean and covariance terms can be derived as:

E[log z] = ε̄, Var[log z] = σ2ε

E[log k] =
ν

1− (α+ ν)
log
( ν
ω

)
− 1− ν

1− (α+ ν)
log

(r + δ)

α︸ ︷︷ ︸
K̂0

+
1

1− (α+ ν)

(
ε̄+ (

1

1− ν
)
ṽ

2

)

Var[log k] =
( 1

1− (α+ ν)

)2
Var(ε̃) =

( 1

1− (α+ ν)

)2
(σ2ε − ṽ)

Cov(log z, log k) = Cov
(
ε,

1

1− (α+ ν)
ε̃
)
= Cov

(
ε,

1

1− (α+ ν)
(
ṽ

σ2ε
ε̄+

ṽ

σ2
s)
)

= Cov
(
ε,

1

1− (α+ ν)

(
ṽ

σ2ε
ε̄+

ṽ

σ2
(ε+ a)

))
=

1

1− (α+ ν)

ṽ

σ2
Var

(
ε
)
=

1

1− (α+ ν)

ṽ

σ2
σ2ε =

1

1− (α+ ν)

σ2εσ
2

σ2ε + σ2
σ2ε
σ2

=
1

1− (α+ ν)

σ2εσ
2
ε

σ2ε + σ2
=

1

1− (α+ ν)

(
σ2ε −

σ2εσ
2

σ2ε + σ2

)
=

1

1− (α+ ν)
(σ2ε − ṽ)

Aggregate output Y is computed by integrating over the cross-sectional distribution of firms:

Y =

∫
zkαnν dµ(z, k) =

( ν
ω

) ν
1−ν

∫
z

1
1−ν k

α
1−ν dµ(z, k)

where µ(z, k) represents the joint distribution of productivity and capital across firms.

Since (log z, log k) are jointly normal, we can compute the aggregate using the property

E[eX ] = eE[X]+ 1
2
Var(X) where X = 1

1−ν log z +
α

1−ν log k. Thus,

log Y =
ν

1− ν
log
( ν
ω

)
+ E

[
1

1− ν
log z +

α

1− ν
log k

]
+

1

2
Var

[
1

1− ν
log z +

α

1− ν
log k

]
=

ν

1− ν
log
( ν
ω

)
+

1

1− ν
E[log z] +

( 1

1− ν

)2 1
2
V ar[log z]

+
α

1− ν
E[log k] +

( α

1− ν

)2 1
2
V ar[log k]

+
1

1− ν

α

1− ν
Cov(log z, log k). (22)
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Let K0 =
ν

1−ν log
(
ν
ω

)
+ α

1−ν K̂0. Substituting into (22) the mean and covariance matrix:

log Y = K0 +
1

1− ν
ε̄+

1

2

(
1

1− ν

)2

σ2ε (23)

+
α

1− ν

(
1

1− (α+ ν)
ε̄+

1

2(1− ν)(1− (α+ ν))
ṽ

)
(24)

+
1

2

[(
α

1− ν

)2( 1

1− (α+ ν)

)2

+
2α

(1− ν)2
1

1− (α+ ν)

]
(σ2ε − ṽ). (25)

Rearranging and grouping terms to match the effects identified in the main text (Equation (6)),

and abstracting from the overall constant K0:

log Y ≈

(
1

1− ν
ε̄+

1

2

(
1

1− ν

)2

σ2ε

)
︸ ︷︷ ︸

“Jensen effect”

+

(
α

1− (α+ ν)

[
1

1− ν
ε̄

]
+

α

1− (α+ ν)

[(
1

1− ν

)2 ṽ

2

])
︸ ︷︷ ︸

“Oi-Hartman-Abel effect”

+

(
1

2

(
1

1− ν

)2 [ α

1− (α+ ν)

]2
+

1

(1− ν)2
α

1− (α+ ν)

)
σ2ε︸ ︷︷ ︸

“Reallocation effect”

−

(
1

2

(
1

1− ν

)2 [ α

1− (α+ ν)

]2
+

1

(1− ν)2
α

1− (α+ ν)

)
ṽ︸ ︷︷ ︸

“Uncertainty effect”

(26)

To analyze the impact of volatility and noise, we differentiate Equation (26) with respect to

σ2ε and σ2. Let us define the following positive coefficients from Equation (26): The coefficient

of σ2ε in the Jensen effect:

CJ =
1

2

(
1

1− ν

)2

> 0

The coefficient of ṽ in the Oi-Hartman-Abel effect:

COHA =
α

1− (α+ ν)

(
1

1− ν

)2 1

2
=

α

2(1− ν)2(1− (α+ ν))
> 0

And the coefficient for the Reallocation and Uncertainty effects:

CR =

(
1

2

(
1

1− ν

)2 [ α

1− (α+ ν)

]2
+

1

(1− ν)2
α

1− (α+ ν)

)
> 0 (27)

Note that the terms in Equation (26) that depend only on ε̄ do not affect these derivatives.
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Effect of σ2ε (volatility): Differentiating log Y (from Equation (26)) with respect to σ2ε :

∂ log Y

∂σ2ε
= CJ + COHA

∂ṽ

∂σ2ε
+ CR

∂(σ2ε − ṽ)

∂σ2ε

Since CJ > 0, COHA > 0, CR > 0, and both derivatives ∂ṽ
∂σ2

ε
and ∂(σ2

ε−ṽ)
∂σ2

ε
are positive from

Lemma 2, ∂ log Y
∂σ2

ε
is positive. Aggregate output increases with volatility σ2ε .

Effect of σ2 (noise): Differentiating log Y (from Equation (26)) with respect to σ2:

∂ log Y

∂σ2
= COHA

∂ṽ

∂σ2
+ CR

∂(σ2ε − ṽ)

∂σ2
= COHA

∂ṽ

∂σ2
− CR

∂ṽ

∂σ2
= (COHA − CR)

∂ṽ

∂σ2

We used ∂(σ2
ε−ṽ)

∂σ2 = − ∂ṽ
∂σ2 from Lemma 2. We have: COHA = α

2(1−ν)2(1−(α+ν))
and CR =

α2

2(1−ν)2(1−(α+ν))2
+ α

(1−ν)2(1−(α+ν))
= α2

2(1−ν)2(1−(α+ν))2
+ 2 · COHA. Since α > 0, 1 − ν > 0, and

1− (α+ ν) > 0, the term α2

2(1−ν)2(1−(α+ν))2
is strictly positive. Thus, CR > COHA, which implies

(COHA − CR) < 0. Given that ∂ṽ
∂σ2 > 0 and (COHA − CR) < 0, ∂ log Y

∂σ2 < 0. Aggregate output

decreases with noise σ2.

Therefore, aggregate output increases with σ2ε and decreases with σ2.
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C Numerical Method

In this subsection I describe the solution method used to generate the results in the paper.

A common numerical method in computing an equilibrium business cycle model with heteroge-

neous agents under aggregate uncertainty is to approximate the firm distribution with a finite

set of moments such as the mean of asset holdings, following Krusell and Smith’s (1997, 1998)

heterogeneous household model, or of capital stock as in Khan and Thomas’ (2008) heteroge-

neous firm model. Moreover, Khan and Thomas (2013) extend their original forecasting rules to

allow credit shocks in that they introduce ζ1 and ζ2 as dummy variables: ζ1 = 1 if the economy

was in a credit crisis in the last period (otherwise ζ1 = 0). Similarly, ζ2 = 1 if the economy

was in a credit crisis in two periods in the past (otherwise ζ2 = 0). I follow Khan and Thomas

(2013)’s forecasting rules for my two-state Markov process: ordinary states σL and uncertain

state σH .

Let C(σ, µ) and N(σ, µ) be the market-clearing consumption and hours worked. It fol-

lows that market-clearing conditions are: (1) the real wage equal the household marginal

rate of substitution between leisure and consumption: w (σ, µ) = D2U(C(σ, µ), 1 −
N(σ, µ))/D1U(C(σ, µ), 1 − N(σ, µ)); and (2) firms’ state-contingent discount factors are con-

sistent with the household marginal rate of substitution between consumption across states:

d (σ′, σ, µ) = βD1U(C(σ′, µ′), 1−N(σ′, µ′))/D1U(C(σ, µ), 1−N(σ, µ)).

I then define p (σ, µ) = D1U(C(σ, µ), 1 − N(σ, µ)); and, write the real wage as, w (σ, µ) =

D2U(C(σ, µ), 1−N(σ, µ))/p (σ, µ) .

This allows me to reformulate the firm’s problem in the main text as follows:

w(ε̃, ṽ, s, k;σ, µ) = max
n,k′

[
p(σ, µ)

(
eεkαnν − ω(s, µ)n+ (1− δ)k − k′

)
+ (1− π)βEσ′|σw0(ε̃

′, ṽ′, k′;σ′, µ′)

+ πβEσ′|σw0(ε̃
′
0, ṽ

′
0, k

′;σ′, µ′)
]

(27)

subject to : µ′ = Γ(s, µ). (28)

w0(ε̃, ṽ, k;σ, µ) = Es|(ε̃,ṽ)w(ε̃, ṽ, s, k;σ, µ). (29)

My model includes a distribution, which is in general a high-dimensional object, and I

approximate it with the first-moment of the distribution of capital m. As noted, I introduce

two dummy variables: ψ1 and ψ2 where ψ1 = 1 if the economy was in an uncertain state in the

previous period and ψ1 = 0 otherwise. Similarly, ψ2 = 1 if the economy was in an uncertain

state two periods in the past and ψ2 = 0 otherwise. Therefore, agents in the model perceive
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(σ,m,ψ1, ψ2) as the economy’s aggregate state.

The solution method iterates until the following forecasting rules are converged:

log xt+1 = βi0 + βi1 log xt + βi2ψ1,t + βi3ψ2,t

where x ∈ {p,m} and i corresponds to the aggregate state either σ = σL or σ = σH . First, firms’

value functions are solved in an inner loop using existing forecasting rules for p and m. After

isolating firms value functions W from the above problem in the inner loop, we then use such W

in an outer loop where I simulate the model by finding equilibrium quantities and prices period

by period. That is, with the aggregate state at the beginning of each period, (σ,m,ψ1, ψ2), I

use the forecasting rule and firms value functions W to calculate the future values and let firms

choose optimal investment and labor decision: k′ and n. With such optimal decisions, I calculate

the aggregate quantities to check if the market clearing conditions are satisfied, and until they

do, I keep this optimization step to find equilibrium quantities and prices in each period. Once

they are obtained, I update the distribution of firms for the next period, which gives m, the

endogenous aggregate state at the beginning of the next period, along with exogenous state

like σ,ψ1,ψ2. From the simulation, a time-series of aggregate variables is obtained and used to

estimate new forecasting rules. With new forecasting rules estimated, I go back to an innerloop

and move onto an outerloop, and I repeat the process until forecasting rules are converged.

Every outerloop starts with a distribution of firms derived from the steady state solution of the

model. The equilibrium forecasting rules are presented in Table 14.

Table 14: : Conditional forecasting rules

Rule State β0 β1 β2 β3 S.E. Adj. R2

Forecasting p σ = σL 0.69690 -0.40362 0.00042 0.00079 0.00015 0.99996
Forecasting p σ = σH 0.70290 -0.41646 0.00036 0.00064 0.00011 0.99935

Forecasting m′ σ = σL 0.05910 0.88466 -0.00190 -0.00221 0.00052 0.99623
Forecasting m′ σ = σH 0.06523 0.87142 -0.00197 -0.00200 0.00050 0.99724

Recently, the shape of the distribution of micro-level agents lies at the heart of the debate

on the aggregate implications, as, for example, demonstrated by Krueger, Mitman, and Perri

(2016). They show that as long as the movement of cross-sectional distributions lines up with the

movement of the mean of the distribution, then quasi-aggregation works even for economies with

highly skewed distributions. As eloquently explained by Krueger et al. (2016), the distribution

of micro-level agents matter in Khan and Thomas (2013) and in my model; however, quasi-

aggregation works.
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D Business Cycle Statistics: Parameter Robustness Analysis

Table 15: Business Cycle Statistics: Varying σ (Risk Parameter)

Variable Statistic imp1636 imp0307 imp1259
(σ = 0.10) (σ = 0.13) (σ = 0.16)

Output (Y)
σ(x) 0.681 0.559 0.356
σ(x)/σ(Y ) 1.000 1.000 1.000
ρ(x, Y ) 1.000 1.000 1.000

Consumption (C)
σ(x) 0.304 0.254 0.172
σ(x)/σ(Y ) 0.447 0.454 0.485
ρ(x, Y ) 0.774 0.689 0.644

Investment (I)
σ(x) 2.752 2.367 1.527
σ(x)/σ(Y ) 4.042 4.237 4.293
ρ(x, Y ) 0.953 0.942 0.927

Employment (N)
σ(x) 0.612 0.428 0.231
σ(x)/σ(Y ) 0.898 0.767 0.651
ρ(x, Y ) 0.949 0.941 0.875

Notes: σ(x) denotes the standard deviation (in %), σ(x)/σ(Y ) is the relative standard deviation, and ρ(x, Y ) is
the correlation with output. Higher σ reduces overall volatility.

Table 15 presents the sensitivity analysis for the risk parameter σ. The results show that

higher values of σ systematically reduce volatility across all macroeconomic variables. Output

volatility decreases from 0.681% to 0.356% as σ increases from 0.10 to 0.16. Investment remains

the most volatile component, with relative volatility around 4 times that of output. The corre-

lation patterns remain strong, though consumption’s correlation with output weakens slightly

at higher risk levels.

Figure 11 illustrates the impulse response functions corresponding to different risk param-

eter values. The dampening effect of higher σ is clearly visible across all variables, with the

responses becoming more muted as risk aversion increases.

The price adjustment parameter analysis in Table 16 reveals that price flexibility has a

moderate but consistent impact on business cycle dynamics. More flexible prices (lower πd)

generate higher output volatility, increasing from 0.665% to 0.694% as πd decreases from 0.35

to 0.30. Employment shows the most sensitivity to price adjustment speed, with its correlation

with output strengthening as prices become more flexible.

The impulse response analysis in Figure 12 confirms that greater price flexibility amplifies

the economy’s response to shocks, consistent with the volatility patterns observed in the business

cycle statistics.

Table 17 examines the role of productivity shock variance. Interestingly, higher productivity

shock variance σϵ reduces output volatility while substantially increasing mean output levels.
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Figure 11: Impulse Response Functions: Varying σ (Risk Parameter)
Notes: Impulse responses to aggregate shocks across different risk parameter values. Higher σ dampens the
response magnitude across all variables.

Table 16: Business Cycle Statistics: Varying Price Adjustment Parameter (πd)

Variable Statistic imp1658 imp2055 imp0051
(πd = 0.30) (πd = 0.325) (πd = 0.35)

Output (Y)
σ(x) 0.694 0.679 0.665
σ(x)/σ(Y ) 1.000 1.000 1.000
ρ(x, Y ) 1.000 1.000 1.000

Consumption (C)
σ(x) 0.314 0.310 0.301
σ(x)/σ(Y ) 0.451 0.456 0.453
ρ(x, Y ) 0.772 0.772 0.759

Investment (I)
σ(x) 2.795 2.729 2.701
σ(x)/σ(Y ) 4.025 4.017 4.064
ρ(x, Y ) 0.952 0.951 0.950

Employment (N)
σ(x) 0.582 0.590 0.603
σ(x)/σ(Y ) 0.838 0.869 0.907
ρ(x, Y ) 0.921 0.937 0.955

Notes: Lower πd indicates more flexible price adjustment. More flexible prices (lower πd) lead to higher output
volatility.
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Figure 12: Impulse Response Functions: Varying πd (Price Adjustment)
Notes: Impulse responses with varying price flexibility. Lower πd increases response amplitudes in aggregate
variables.

Table 17: Business Cycle Statistics: Varying Productivity Shock Parameter (σϵ)

Variable Statistic imp1712 imp0035 imp0438
(σϵ = 0.46) (σϵ = 0.48) (σϵ = 0.49)

Output (Y)
σ(x) 0.695 0.685 0.658
σ(x)/σ(Y ) 1.000 1.000 1.000
ρ(x, Y ) 1.000 1.000 1.000

Consumption (C)
σ(x) 0.314 0.304 0.282
σ(x)/σ(Y ) 0.452 0.444 0.429
ρ(x, Y ) 0.808 0.800 0.788

Investment (I)
σ(x) 2.742 2.736 2.672
σ(x)/σ(Y ) 3.945 3.993 4.063
ρ(x, Y ) 0.956 0.957 0.959

Employment (N)
σ(x) 0.645 0.683 0.681
σ(x)/σ(Y ) 0.928 0.997 1.035
ρ(x, Y ) 0.941 0.945 0.954

Notes: Higher σϵ increases mean output levels substantially (0.809 → 0.849) while maintaining strong correlations.
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This suggests that larger productivity shocks create stabilizing effects through improved long-run

growth prospects, despite the increased short-term uncertainty.

Figure 13: Impulse Response Functions: Varying σϵ (Productivity Shock)
Notes: Responses to productivity shocks vary with σϵ. Higher σϵ increases mean output and stabilizes fluctuations.

The corresponding impulse responses in Figure 13 illustrate how higher productivity shock

variance leads to more stable economic dynamics over time, reinforcing the stabilization mech-

anism identified in the business cycle statistics.

The capital share parameter α exhibits the strongest effects among all parameters exam-

ined, as shown in Table 18. Higher capital shares dramatically increase both output levels and

volatility, with output volatility rising by 19.1% as α increases from 0.25 to 0.29. Notably, con-

sumption’s correlation with output weakens significantly, suggesting that higher capital intensity

alters the fundamental co-movement patterns in the economy.

Figure 14 demonstrates the amplified responses associated with higher capital shares, con-

firming the increased sensitivity to shocks documented in the business cycle statistics.

Table 19 reveals highly non-monotonic effects of the upper bound parameter ξub. Interme-

diate values (0.075 and 0.10) create severe distortions in consumption and investment behavior,

with consumption volatility increasing dramatically and correlations with output collapsing.

However, at ξub = 0.15, stability is restored, suggesting the existence of threshold effects in the

constraint mechanism.

Figure 15 illustrates the complex dynamics associated with different upper bound parameter

values, with intermediate values generating the most volatile and unstable responses.

Table 20 provides a comprehensive summary of the parameter sensitivity analysis. The
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Table 18: Business Cycle Statistics: Varying Capital Share Parameter (α)

Variable Statistic imp2155 imp0514 imp1251
(α = 0.25) (α = 0.27) (α = 0.29)

Output (Y)
σ(x) 0.701 0.732 0.835
σ(x)/σ(Y ) 1.000 1.000 1.000
ρ(x, Y ) 1.000 1.000 1.000

Consumption (C)
σ(x) 0.318 0.323 0.320
σ(x)/σ(Y ) 0.454 0.442 0.384
ρ(x, Y ) 0.794 0.733 0.669

Investment (I)
σ(x) 2.783 2.878 3.287
σ(x)/σ(Y ) 3.972 3.934 3.937
ρ(x, Y ) 0.954 0.952 0.963

Employment (N)
σ(x) 0.626 0.637 0.731
σ(x)/σ(Y ) 0.893 0.870 0.875
ρ(x, Y ) 0.939 0.944 0.965

Notes: Higher capital share α dramatically increases both output levels (0.796 → 0.910) and volatility (+19.1%).
Consumption correlation with output weakens significantly.

Figure 14: Impulse Response Functions: Varying α (Capital Share)
Notes: Changes in capital share alter the robustness of economic responses to shocks. Higher α amplifies volatility
and growth.
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Table 19: Business Cycle Statistics: Varying Upper Bound Parameter (ξub)

Variable Statistic imp0051 imp0824 imp0320 imp1519
(ξub = 0.00) (ξub = 0.075) (ξub = 0.10) (ξub = 0.15)

Output (Y)
σ(x) 0.665 0.843 0.857 0.654
σ(x)/σ(Y ) 1.000 1.000 1.000 1.000
ρ(x, Y ) 1.000 1.000 1.000 1.000

Consumption (C)
σ(x) 0.301 0.974 1.468 0.397
σ(x)/σ(Y ) 0.453 1.155 1.714 0.607
ρ(x, Y ) 0.759 0.302 0.155 0.906

Investment (I)
σ(x) 2.701 5.618 7.770 2.311
σ(x)/σ(Y ) 4.064 6.658 9.065 3.533
ρ(x, Y ) 0.950 0.620 0.489 0.930

Employment (N)
σ(x) 0.603 0.761 0.768 0.512
σ(x)/σ(Y ) 0.907 0.902 0.896 0.783
ρ(x, Y ) 0.955 0.971 0.986 0.946

Notes: ξub represents the upper bound constraint in the model. Intermediate values (0.075, 0.10) create significant
distortions in consumption volatility and correlations, while ξub = 0.15 restores stability.

Figure 15: Impulse Response Functions: Varying ξub (Upper Bound Parameter)
Notes: Non-monotonic effects of ξub on economic dynamics. Intermediate values create volatility and reduce
correlations, suggesting threshold effects in the constraint mechanism.
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Table 20: Summary of Parameter Effects on Key Business Cycle Statistics

Parameter Range Mean Output Output Vol. Inv. Vol. C-Y Corr.

σ 0.10 – 0.16 0.797 – 0.790 0.681 – 0.356 4.04 – 4.29 0.774 – 0.644
πd 0.30 – 0.35 0.806 – 0.798 0.694 – 0.665 4.03 – 4.06 0.772 – 0.759
σϵ 0.46 – 0.49 0.809 – 0.849 0.695 – 0.658 3.95 – 4.06 0.808 – 0.788
α 0.25 – 0.29 0.796 – 0.910 0.701 – 0.835 3.97 – 3.94 0.794 – 0.669

Notes: This table summarizes the range of effects across parameter variations. α has the strongest effects on both
output levels and volatility, while σ primarily affects volatility.

capital share parameter α emerges as the most influential, affecting both output levels and

volatility substantially. In contrast, the risk parameter σ primarily affects volatility without

significant level effects, while the productivity shock parameter σϵ has notable effects on output

levels with stabilizing effects on volatility.

E Economic Responses to Increased Volatility

E.1 Partial Equilibrium Analysis

This section analyzes the partial equilibrium impulse response functions (IRFs) shown in

Figure 16, which illustrate the economic responses to an increase in productivity volatility (σ2ε)

for different values of the productivity reset probability π. Under partial equilibrium, wages and

interest rates remain fixed, allowing us to isolate the direct effects of volatility changes on firm

behavior.

To understand how the volatility shock propagates through the economy, we first examine

the evolution of firm-level statistics. When the volatility shock hits in period 1, no immediate

change occurs in the distribution of beliefs because firms have not yet drawn new productivity

values. However, in period 2, both Var(ε̃) and average uncertainty ṽ jump sharply as a fraction

of firms draw from the more dispersed productivity distribution. Unlike a Bayesian uncertainty

shock where belief compression reduces Var(ε̃), here the variance of beliefs increases because

resetting firms now have more dispersed true productivity values to learn about. This increased

dispersion drives positive aggregate effects through the mechanisms identified in Proposition 1.

Following Proposition 1, aggregate output dynamics are driven by three key effects when

productivity volatility increases. First, the Jensen effect arises because productivity z = eε

is log-normally distributed. Second, the Oi-Hartman-Abel (OHA) effect operates through the

convexity of the marginal product of capital in firm-level productivity. Third, the reallocation

effect emerges as greater productivity dispersion across firms creates larger potential output

gains when capital is allocated efficiently.
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When σ2ε increases in period 1, all firms rationally anticipate that with probability π, they

will draw a new productivity from the more dispersed distribution in the next period.30 As

shown in Figure 16, the immediate effects in period 1 are remarkably small. Output, employ-

ment, and TFP show virtually no response because the actual productivity distribution has not

yet changed—only expectations about future draws have been affected. Investment exhibits a

slight positive response, reflecting firms’ forward-looking behavior. This modest increase arises

because firms anticipate the positive effects identified in Proposition 1: the Jensen effect on

mean productivity, the OHA effect on optimal capital stocks, and the reallocation effect from

increased productivity dispersion. Notably, unlike Bayesian uncertainty shocks to σ2, volatil-

ity shocks to σ2ε do not generate negative uncertainty effects that compress belief dispersion,

explaining why even the anticipation effect on investment is positive rather than negative.

Figure 16: Economic Responses to Increased Volatility: Partial Equilibrium Analysis. The figure
shows impulse response functions for output, employment, investment, and TFP following a
permanent increase in productivity volatility σ2ε . Different lines represent varying productivity
reset probabilities (π). Higher reset probabilities lead to larger and faster responses, as more
firms draw from the new, more dispersed productivity distribution.

30From the Bellman equation (9), the volatility shock affects firms’ expectations about future states. While the
expected posterior mean Eσ′|σ[ε̃0] remains unchanged (as the unconditional mean ε̄ is unaffected), firms anticipate
that if they reset, their initial uncertainty ṽ0 will be higher due to the increased σ2

ε . This leads to higher expected
capital choice k′ through the convexity of optimal policies, but these effects only materialize in period 2 when
productivity resets actually occur.
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The dynamics change dramatically in period 2 when the volatility shock materializes. A

fraction π of firms draw new productivity realizations from the more dispersed distribution

and begin new learning cycles with more dispersed initial priors. The three theoretical effects

now become evident in aggregate variables. The Jensen effect increases mean productivity for

resetting firms, while the OHA effect induces higher investment due to return convexity. Most

importantly, the reallocation effect improves allocative efficiency through greater productivity

dispersion. All variables exhibit positive responses that gradually decay toward steady state as

the economy adjusts to the new volatility regime.

The reset probability π plays a crucial role in shaping both the magnitude and timing of

responses. Higher values of π generate larger peak responses as more firms are affected by the

new productivity distribution. The effects also materialize more quickly when more firms reset,

though all parameterizations eventually converge to similar steady states. This pattern confirms

that the aggregate impact scales directly with the fraction of firms experiencing productivity

resets (see Figure 17).

Figure 17: Economic Responses to Increased Volatility: Partial Equilibrium Analysis. The figure
shows impulse response functions for output, employment, investment, and TFP following a
permanent increase in productivity volatility σ2ε . Different lines represent varying productivity
reset probabilities (π). Higher reset probabilities lead to larger and faster responses, as more
firms draw from the new, more dispersed productivity distribution.
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E.2 General Equilibrium Analysis

Figure 18 presents the general equilibrium impulse response functions following an increase

in productivity volatility σ2ε . In contrast to the partial equilibrium analysis, these responses in-

corporate endogenous adjustments in wages and interest rates, as well as household consumption

and savings decisions.

Figure 18: Economic Responses to Increased Volatility: General Equilibrium
Notes: Each panel plots the aggregate economy’s response to an increase in volatility σ2

ε , which occurs in period 1.
The percent deviation from the variable’s pre-shock average level is shown. The model incorporates endogenous
factor prices and household optimization.

The general equilibrium responses reveal several important differences from the partial equi-

librium case. Most strikingly, investment falls in period 1 under general equilibrium, contrasting

with the slight increase observed under partial equilibrium. This reversal occurs because when

all firms simultaneously anticipate higher future returns from the Jensen, OHA, and realloca-

tion effects, their collective desire to increase investment drives up the equilibrium interest rate.

This endogenous interest rate increase makes current investment more expensive, overwhelm-

ing the positive direct effects and causing aggregate investment to decline. Employment also

contracts slightly as wage adjustments reflect firms’ forward-looking behavior regarding future

productivity dispersion.

The consumption dynamics provide further insight into the general equilibrium mechanisms.

Consumption rises immediately in period 1, reaching approximately 0.15% above steady state.
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This increase occurs because the decline in investment frees up resources for current consumption

with output relatively unchanged in period 1 (since firms have not yet drawn new productivity).

Additionally, households optimally choose to increase consumption in anticipation of higher

future income from productivity gains. After a brief dip in period 2 as investment rebounds,

consumption settles at a persistently higher level, reflecting the economy’s enhanced productive

capacity.

The contrast with Bayesian uncertainty shocks is particularly instructive. While noise

shocks (σ2) create belief compression that reduces Var(ε̃) and causes negative aggregate effects,

volatility shocks (σ2z) work through an entirely different channel. Here, the variance of beliefs

increases rather than decreases, as firms that reset face genuinely more dispersed productiv-

ity draws. This increased dispersion generates positive effects through all three channels in

Proposition 1: the Jensen effect raises mean productivity, the OHA effect increases optimal cap-

ital choices, and the reallocation effect improves allocative efficiency, leading to the expansion

observed in all real variables after period 2.
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