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Abstract

Using a long panel data set on Japanese firms, we find that firms make more

precise forecasts and less autocorrelated forecast errors as they gain more experience.

Then, we build a firm dynamics model where firms gradually learn about their demand

by using a noisy signal. Using expectations data over time, we cleanly isolate the

learning mechanism from other mechanisms and find that it accounts for 20%–40%

of the overall decline in forecast errors over the life cycle. Productivity gains from

removing information frictions range from 3% to 12%, with firm entry and exit playing

prominent roles.
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1 Introduction

This paper proposes a new approach to quantifying the impact of imperfect information on

aggregate productivity in a firm dynamics model with learning. The exercise involves mea-

suring the gap in aggregate productivity between the status quo and the perfect information

scenario as in existing research. For this exercise to be valid, one needs to identify the extent

of imperfect information as the status quo based on a mapping from observed data on the

endogenous variables of the model to parameters that govern the degree of informational

imperfection. Although existing studies construct such a mapping based on moments such

as input and output choices, this approach has limitations in terms of identifying certain

types of information frictions and it requires simplifying assumptions on the information en-

vironment.1 The contribution of this paper is the use of direct expectations data to establish

such a clean mapping, and thereby to identify the extent of the dynamic (i.e., life-cycle)

imperfect information in an enriched model environment and to demonstrate its detrimental

impact on aggregate productivity.

We consider that each individual firm faces uncertainty about idiosyncratic demand and

productivity. Demand is time-invariant and learned gradually, whereas productivity follows

a first-order autoregressive (AR(1)) process with a variance that declines with firm age (the

volatility effect) and is perfectly revealed at the end of each period. The consequences are

twofold. First, the learning generates the autocovariances of forecast errors that decline with

firm age because firms correct past forecast errors about demand partially and gradually over

time. The volatility effect has no impact on the autocovariance because firms correct forecast

errors about productivity perfectly and instantly in each period. Second, both the learning

and volatility effects yield a variance of forecast errors that declines with firm age. Thus,

we can use our model as an accounting device to decompose the contributions of learning

and volatility to firms’ uncertainty: the contribution of learning is entirely responsible for

1For instance, the seminal work of David, Hopenhayn, and Venkateswaran (2016) and David and
Venkateswaran (2018) focuses on static (or within-period) information frictions, as information is perfectly
revealed at the end of each period.
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the autocovariance and partially responsible for the variance, with the remaining variance

attributed to the volatility effect.

Our paper proceeds in three steps. First, we use a 20-year panel data set on Japanese

multinational firms that matches parent firms with affiliated firms. The data set is based

on annual business surveys conducted by the Japanese government. Exploring our data set,

we document that the variance of forecast errors declines with firms’ experience of opera-

tions, and that this is robust to controlling for firm size and measures of market/product

diversification. Crucially, we document that although each firm’s forecast errors are posi-

tively autocorrelated, the autocorrelation of forecast errors declines with firms’ experience,

a new fact that has not been uncovered by existing studies. In addition, we find that firms

in countries with better management and/or smaller time differences from Japan make less

serially correlated forecast errors. These stylized facts suggest that firms learn about their

demand and become better informed as they accumulate more experience. In addition, low-

quality management and barriers to within-firm communication are likely to be drivers of

information frictions. We believe that the stylized facts about firm-level forecasts are use-

ful for disciplining dynamic firm life-cycle models even if future researchers decide to adopt

different setups.

In the second part of the paper, we integrate Jovanovic (1982)-style learning into an oth-

erwise standard industry equilibrium model of heterogeneous firms. Firms face a downward-

sloping demand curve in a setting where the firm-specific time-invariant demand shifter is

heterogeneous across firms and unknown to them (i.e., never observed by the firm). We de-

part from Jovanovic (1982) in two crucial ways. First, we assume that firms face information

constraints and thus learn about their demand from a noisy signal, which is purely informa-

tional and does not affect firms’ per-period profits (i.e., it is payoff irrelevant).2 Second, we

2We show that this information structure allows us to reproduce the age-declining variance and auto-
correlation of forecast errors. The age-declining autocorrelation of forecast errors implies a deviation from
full-information rational expectations, but it can reflect either a deviation from full information or departures
from rational expectations. We account for the age-declining autocorrelation of forecast errors by a model
of information constraints under rational expectations in the spirit of (Coibion and Gorodnichenko, 2012;
Coibion, Gorodnichenko, and Kumar, 2015).
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introduce an idiosyncratic shock to firm-level productivity in every period, which is revealed

to the firm at the end of each period, and we assume that its volatility decreases as firms

become older, following Atkeson and Kehoe (2005). Therefore, not only learning but also

the age-declining volatility contribute to the age-declining variance of forecast errors in the

model, reflecting factors other than learning in much the same way as reality, where there

are many other factors that explain the age-declining variance of forecast errors.3

In the final part of the paper, we use our model to implement three empirical/quantitative

exercises. First, our decomposition exercise shows that the contribution of learning to the

change in the variance of forecast errors over the firm’s life cycle ranges between 20% to 40%.

To the best of our knowledge, our decomposition exercise is the first to isolate the evolution

of firms’ beliefs over their life cycle directly from panel data on expectations and to succeed

in isolating the learning channel from other factors that contribute to the age-declining

volatility of the firm.

Second, we demonstrate our approach incorporating both the learning and other channels

by calibrating our model to infer the learning parameters and other key parameters governing

firm dynamics. Our counterfactual experiment of eliminating imperfect information reveals

not only a substantial gain in overall productivity, but also the role of endogenous selection

in driving it. In our calibrated model, firms incur a positive fixed cost of operation every

period. Therefore, only firms with high productivity and/or high perceived demand enter

and stay active, whereas other firms may not enter, or may exit soon after entry. This

endogenous selection is shut down in a version of our model with zero fixed operation costs,

such that all firms enter and only exit due to a random shock. With selection at work in the

model, providing better information leads not only to more informed static decisions such as

employment, but also to more informed dynamic decisions on entry and exit, implying larger

gains in overall productivity. For instance, the productivity gain is 3.49% when we assume

3This paper focuses on learning, not modeling all other mechanisms. Thus, we use the (exogenously)
age-declining volatility to capture all other mechanisms that affect firms’ forecast errors without taking a
stand on particular sources.
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away the fixed cost, and it becomes 6.35% in our baseline model with the fixed cost. Another

important implication is that gains (and the improved selection effect) from removing the

information friction are disproportionally larger among younger firms, as life-cycle learning

plays a more prominent role for young firms.

Finally, we implement a cross-regional analysis, where we calibrate our model to match

data moments for eight regions/countries in the world. We show that the degree of imperfect

information and the associated aggregate implications vary across regions/countries. Elimi-

nating the life-cycle information friction leads to average productivity gains ranging from 3%

to 12% for different regions. For example, the productivity loss due to information frictions

in Africa is almost twice as large as that in Western Europe. Our results are broadly consis-

tent with the view that low-quality management and inefficient within-firm communications

can lead to more severe information frictions and therefore larger productivity losses.4

Related literature: Our work contributes to the literature on misallocation due to im-

perfect information, particularly in the life cycle of firms (Hsieh and Klenow (2014)). Our

approach and focus differ from previous work, such as David et al. (2016) and David and

Venkateswaran (2018), as we directly quantify the productivity loss caused by the life-cycle

information friction. This allows us to separately measure the degree of volatility and infor-

mation frictions over the firm’s life cycle, which can have different policy implications.5 We

show that productivity losses through extensive margin dynamics, such as firms’ entries and

exits, are substantial and highlight the detrimental effect of informational imperfection on

young firms.6 Finally, existing research uses data on public firms to quantify the gain from

eliminating information frictions (e.g., David et al. (2016) and Ma, Ropele, Sraer, and Thes-

4The caveat here is that our data only contain Japanese firms in various regions/countries, and Japanese
firms in one region/country may not be representative of all firms in that region/country. Therefore, the
calibrated parameters and the implied productivity gains across regions should be taken with caution.

5Life-cycle learning is more relevant for young firms. Therefore, policies that specifically help young firms
(e.g., subsidizing their training programs for managers/workers) can lead to productivity gains by alleviating
the information problem. For the static information friction studied in David et al. (2016), reducing the
labor/capital adjustment costs can reduce the productivity loss due to imperfect information.

6Our paper complements the results of other studies on misallocation, including those on financial fric-
tions, such as Buera, Kaboski, and Shin (2011) and Midrigan and Xu (2014).
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mar (2019)). As we show that the severity of informational imperfection is higher among

younger firms, the productivity gain from eliminating information frictions for the entire

economy might be understated by the previous papers.

Although economists have long speculated on how agents form expectations, recent stud-

ies, such as Bloom, Davis, Foster, Lucking, Ohlmacher, and Saporta-Eksten (2020) and Altig,

Barrero, Bloom, Davis, Meyer, and Parker (2020), have begun to collect and analyze direct

expectations data. This approach is useful in modeling and calibrating theoretical frame-

works, as shown by the seminal works of Coibion and Gorodnichenko (2012) and Coibion

et al. (2015).7 Our paper contributes to this literature by examining firms’ expectations of

idiosyncratic objects, such as their own sales, following the approach of Enders et al. (2022),

Born, Enders, Müller, and Niemann (2022), and Bachmann, Carstensen, Lautenbacher, and

Schneider (2021). We use the expectations data to understand the dynamics of young firms.8

Our paper contributes to the literature on firm-level uncertainty by examining how it

evolves over the life cycle. Our work aligns with studies by Baley and Blanco (2019), Ba-

ley, Figueiredo, and Ulbricht (2022), and Ilut, Valchev, and Vincent (2020), who examine

uncertainty fluctuations within firms, although, as noted previously, our paper is unique in

separating learning from volatility. In a business-cycle context, the role of information accu-

mulation at the firm level has been studied by Ilut and Saijo (2021), who also use forecast

data to validate the structural model.

2 Empirical Facts

In this section, we construct our panel of Japanese firms operating in foreign markets to

document the properties of the forecast errors and their relationship with firms’ experience.

The facts that we will present indicate that firms become better informed as they accumulate

7Recent papers that have studied how agents form expectations and respond to shocks include Coibion,
Gorodnichenko, and Kumar (2018), Baker, McElroy, and Sheng (2020), and Enders, Hünnekes, and Müller
(2022).

8We focus on the roles of learning and volatility effects in driving young firm dynamics. For other drivers
of young firm dynamics, see Sedláček and Sterk (2017) and Foster, Haltiwanger, and Syverson (2016).
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more experience, and that management and within-firm communication could be one driver

of information frictions.

2.1 Data and the Reliability of Sales Forecasts

Our main data source is the Basic Survey on Overseas Business Activities (the “foreign

activities survey” hereinafter) conducted by the Ministry of Economy, Trade and Industry

(METI). The survey contains information on overseas affiliated firms of Japanese parent

companies, including the affiliated firms’ location, industry, sales, and employment. The

survey covers two types of overseas businesses: (1) direct (first-tier) affiliated firms with

more than 10% of equity share capital owned by Japanese parent companies, and (2) second-

tier affiliated firms with more than 50% of equity share capital owned by Japanese parent

companies. The survey is designed to include all Japanese overseas affiliates that satisfy

either of the above criteria. Although some firms do not respond to the survey, the response

rate is high (71.3% in 2013). The survey is conducted in July and August each year to collect

firm-level data on the previous fiscal year (April of the previous year to March of the current

year) and their expectations for the current fiscal year.9 We discuss the expectations data

in detail later.

After dropping tax haven countries documented in Gravelle (2009), our baseline regression

sample contains, on average, 1,781 parent companies and 6,922 affiliated firms in a typical

year during the period from 1995 to 2013. Our sample covers Japanese firms operating in 96

countries and 29 industries, including both manufacturing and services. In Appendix Section

A.1, we report descriptive statistics regarding subsamples in different time periods and the

distribution of firms across regions and industries in a typical year. The unit of analysis in

our empirical investigation is the affiliated firm by year. We slightly change the terminology,

9We provide a detailed timeline of the survey in Appendix Section C.3. In addition, we discuss the
implications of firms obtaining three months of experience before they make their current forecast. We
perform a robustness check by making firms effectively “older by three months” in our sample; after re-
calibrating the model, we find slightly larger effects of information friction and gains from moving to perfect
information than we find for our benchmark calibration.
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referring to the affiliated firms as “firms” and to all the affiliated firms belonging to the same

parent company as a “business group.”

The unique feature of the foreign activities survey is that each firm reports its sales

forecast for the current fiscal year when it fills out the survey. Because such information

is rarely available in firm-level data sets, we show that the sales forecasts are reliable and

contain useful information that affects actual firm decisions. First, we find that firms do

not use naive rules to make their sales forecasts. In Appendix Table A-5, only 3.35% of the

observations use their sales in year t as a forecast of sales in t+1. Our main regression results

are almost unchanged after dropping these observations. Second, we show in Appendix

Table A-6 that sales forecasts strongly predict future firm outcomes, even after we control

for realized outcomes in the past. Finally, the foreign activities survey is mandated by METI

under the Statistics Law; thus, the information in the survey cannot be applied for purposes

beyond the scope of the survey, such as tax collection. Firms have no incentive to misreport

because of tax purposes or because they want to manage the expectations of stock market

investors. We provide more details about these validation exercises in Appendix Section A.2.

2.2 Forecast Errors

Now, we describe how firms’ forecast errors evolve over their life cycles. Our main measure

of forecast errors is the log point deviation of the realized sales from the sales forecast,

expressed as:

FElog
t,t+1 ≡ log (Rt+1/Et (Rt+1)) ,

where Rt+1 is the realized sales in period t+ 1 and Et (Rt+1) denotes a firm’s time t forecast

of its sales in the next period. A positive (negative) forecast error means that the firm under-

predicts (over-predicts) its sales. In Appendix Tables A-9, A-10, A-18, and A-19, we show

that our key empirical results are robust to two alternative definitions of forecast errors:

the percentage deviation and the residual of raw forecast errors after removing aggregate
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components such as industry and country-year fixed effects.10 We trim the top and bottom

1% of observations of the forecast errors to exclude outliers.

Figure 1: Distribution of the Forecast Errors
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t,t+1 with the fitted normal density (solid line).

In Figure 1, we plot the distribution of our baseline measure of forecast errors, FElog
t,t+1,

across all firms in all years. The forecast errors are centered around zero, and the distribution

appears to be symmetric. The shape of the density is similar to a normal distribution,

although the center and the tails have more mass than the fitted normal distribution (solid

line in the graph). The average forecast error across all firm-year observations is –0.024,

with a median of –0.005 and a standard deviation of 0.298. The absolute value of FElog
t,t+1 is

0.2, which implies that firms on average over- or under-forecast their sales by 20%.

10The aggregate components explain approximately 11% of the variation in forecast errors. Recent work
has substantiated that firms may have heterogeneous exposure to aggregate shocks, which implies that the
“simple” residual forecast errors that we construct may be affected by the aggregate economic conditions.
Therefore, we construct alternative residual forecast errors by explicitly considering firms’ heterogeneous
exposure to aggregate shocks. For these alternative residual forecast errors, aggregate components explain
approximately 23% of the variation in forecast errors, but our main empirical findings are robust to these
alternative measures. Detailed discussions are provided in Appendix Section A.4.3.
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Fact 1: The Precision of Forecasts Increases as Firms Become More

Experienced

Panel (a) of Figure 2 presents the average absolute value of forecast errors by age cohorts,

where age is top-coded at 10.11 The precision of sales forecasts increases as the firm ages.

Specifically, as the firm’s age increases from one to 10 years, the absolute forecast errors

decline from 36% to 18% on average. Moreover, the decline occurs mainly in the first five

years after entry. For concreteness, we also present these statistics for a subsample in the

manufacturing sector. The patterns are similar.

Figure 2: |FElog| Declines with Firm Age
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(b) Age Dummy Coefficients of |FElog|
Note: Panel (a) plots the average absolute value of FElog by age cohorts for all firms and for the manu-
facturing subsample. Panel (b) plots the coefficients of age dummies in the regression specified in equation
(A-1). Other than age dummies, we control for firm employment, parent firm employment, industry-year
fixed effects, country-year fixed effects, and firm fixed effects. Age-one firms are used as the base category
and the coefficient of 1(Aget = 1) is normalized to zero. The capped spikes indicate the 95% confidence
intervals of the estimates. The two lines correspond to the results in Columns 3 and 5 in Appendix Table
A-8.

We further confirm these patterns by using an ordinary least squares regression of firm

i’s absolute forecast error in year t:

|FElog
it,t+1| = δn + βXit + δct + δst + δi + εit, (1)

11We top code the age at 10, as the average absolute forecast error does not decline much after this age,
especially in regressions where we control for a set of fixed effects and firm size (see Panel b of Figure 2).
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where δn is a vector of age dummies, and δct, δst, and δi represent the country-year, industry-

year, and firm fixed effects, respectively. Time-varying controls, such as firm and parent firm

employment, are denoted by Xit. We use age one as the base category; therefore, the age

fixed effects represent the difference in the absolute forecast errors between age n and age

one. We plot the coefficients of age dummies and their confidence intervals in Panel (b) of

Figure 2. It is clear that the absolute forecast errors decline significantly with firm age. We

report the detailed regression results in Appendix Table A-8.

We interpret the decline in absolute forecast errors as an improvement in firms’ infor-

mation about their own capability and perform a battery of robustness checks to rule out

alternative explanations. As shown in Column 4 of Appendix Table A-8, we find similar

results for firms that have survived and continuously appeared in the data from age one

to seven, suggesting that our results are not driven by endogenous exits or nonreporting.

We further show that our results are (1) robust to alternative measures of forecast errors,

including those that explicitly take into account firms’ heterogeneous exposure to aggregate

shocks (Appendix A.4.2 and A.4.3); (2) robust to controlling for product and market diversi-

fication (Appendix A.4.4); (3) not due to age-dependent biases in the level of forecast errors

(Appendix A.4.5); and (4) not driven by a “partial-year effect,” that is, firms entering in

different months of a fiscal year (Appendix A.4.6).

Fact 2: Forecast Errors are Positively Autocorrelated but Less So

as Firms Become More Experienced

A growing literature has highlighted the serial correlation of forecast errors in various con-

texts. For example, Coibion and Gorodnichenko (2012) and Ryngaert (2017) demonstrated

that professional forecasters’ forecast errors of future inflation rates are autocorrelated, in-

dicating the existence of information frictions related to macroeconomic conditions. Instead

of using expectations data on macroeconomic outcomes, we utilize data on the sales expec-

tations of individual firms and show that their forecast errors are positively autocorrelated
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over time. Importantly, we document that the serial correlation of forecast errors declines

with the firm’s age.

In Appendix Table A-17, we present the serial correlation of forecast errors, for the

entire sample and different age groups. Among all firm-year observations, we find that the

correlation coefficient between FElog
t,t+1 and FElog

t−1,t is 0.137. This result suggests that firms

tend to make systematic errors in forecasting their sales. The remaining three columns show

that such serial correlation becomes weaker when firms gain more experience, indicating

that firms become more informed and make smaller systematic errors when forecasting.

Such patterns are robust to using alternative definitions of forecast errors and to using the

manufacturing subsample.12

Next, we confirm this pattern by running the AR(1) regressions at the firm level. This

allows us to control for the time-varying firm characteristics and various sets of fixed effects

to rule out confounding factors. In particular, we run the following regression:

FElog
i,t+1,t+2 = β1FE

log
i,t,t+1 + β2FE

log
i,t,t+1 × Ageit + β3Xit + δst + δct + δg + uit, (2)

where Ageit denotes the firm’s age at time t and Xit denotes the firm’s other time-varying

characteristics, such as employment at time t. In all regressions, we control for the industry-

year, country-year, and business group fixed effects, denoted by δst, δct, and δg, respectively.

In some regressions, we replace the business group fixed effects with business group–firm age

fixed effects.

Table 1 shows the regression results. To capture the nonlinear effect of the firm’s age, we

use either age top-coded at 10 or the log of age. According to the estimates in Column 1, the

AR(1) coefficient starts at 0.098 at age one and each additional year of experience reduces

it by 0.006. When controlling for business group–firm age fixed effects instead of business

group fixed effects, the AR(1) coefficients as well as the impact of firm age are higher. The

results are similar when we focus on firms in the manufacturing sample (Columns 5–8).

12Importantly, our results are robust when using percentage forecast errors, Rt+1−Et(Rt+1)
Et(Rt+1)

, and are not an

artifact of the log transformation.
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Table 1: AR(1) Regressions and the Effect of Age

Dep. Var: FElog
t+1,t+2 All firms Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8)

FElog
t,t+1 0.104a 0.100a 0.131a 0.123a 0.114a 0.112a 0.137a 0.134a

(0.014) (0.013) (0.018) (0.017) (0.019) (0.019) (0.025) (0.025)
×max{Aget, 10} -0.006a -0.008a -0.008a -0.009a

(0.002) (0.002) (0.002) (0.003)
× log(Aget) -0.018a -0.023a -0.027a -0.031a

(0.006) (0.007) (0.009) (0.011)
log(Emp)t 0.003a 0.003a 0.002b 0.002b 0.002c 0.002c 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
log(Parent Emp)t -0.010b -0.010b -0.010b -0.010b -0.010c -0.010c -0.014b -0.014b

(0.004) (0.004) (0.005) (0.005) (0.006) (0.006) (0.007) (0.007)
Industry-year FE Y Y Y Y Y Y Y Y
Country-year FE Y Y Y Y Y Y Y Y
Business Group FE Y Y Y Y
Busi.Group-Age FE Y Y Y Y

N 93478 93478 84839 84839 58630 58630 52510 52510
R2 0.205 0.205 0.274 0.274 0.229 0.229 0.300 0.300

Notes: Standard errors are clustered at the business group level. Significance levels: c: 0.10, b: 0.05, a: 0.01.

Fact 3: Potential Drivers of Information Frictions

Our data cover a wide range of countries where Japanese firms operate. This subsection

explores how serial correlation of forecast errors are correlated with various characteristics

of each country, using similar specifications to those in Table 1 to shed light on the potential

drivers of underlying differences in informational imperfection across countries.

We focus on three country characteristics: (1) management, (2) time zone differences,

and (3) real gross domestic product (GDP) per capita. As suggested by Bloom, Kawakubo,

Meng, Mizen, Riley, Senga, and Van Reenen (2021), better-managed firms have superior

monitoring practices and can make more accurate forecasts about their own sales growth

than can poorly managed firms. Therefore, we use country-level average management scores

from Bloom, Lemos, Sadun, Scur, and Van Reenen (2014) as a measure of the management

quality in each country. Second, the literature has identified time zone differences as barriers

to communication within (multinational) firms (Gumpert, 2018; Bahar, 2020) that possibly

lead to more information frictions. Finally, we examine real GDP per capita at the beginning

of our sample (1995), which is a proxy for the overall development level of the countries.13 We

13Low GDP per capita may capture a shortage of good managers, as discussed in Hjort, Malmberg, and
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interact the country characteristics with the (one-period) lagged forecast error to observe how

they affect the AR(1) coefficient. These results are by no means causal and the list of drivers

that we study here is not exhaustive. Nevertheless, they help elucidate why information

frictions at the firm level differ.

Table 2: AR(1) Coefficient and Country Characteristics

Dep.Var: FE
log
t+1,t+2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

FE
log
t,t+1 0.1264a 0.1121a 0.1077a 0.0701a 0.0643a 0.0606a 0.0837a 0.0705a 0.0670a

(0.0080) (0.0068) (0.0070) (0.0094) (0.0075) (0.0078) (0.0101) (0.0083) (0.0085)
× Management Score (WMS 2015) -0.0131c -0.0087 -0.0229a

(0.0070) (0.0071) (0.0081)

× Time Diff from Japan 0.0098 0.0142b 0.0116
(0.0066) (0.0066) (0.0073)

× log GDP p.c. 1995 -0.0112c -0.0077 -0.0178a

(0.0058) (0.0058) (0.0066)
Industry-year FE Y Y Y Y Y Y Y Y Y
Country-year FE Y Y Y Y Y Y Y Y Y
Business Group FE Y Y Y
Busi.Group-Age FE Y Y Y

N 62005 96100 96100 61200 95152 95152 53433 86271 86271

R2 0.130 0.135 0.135 0.207 0.201 0.201 0.283 0.270 0.270

Notes: Standard errors are clustered at the business group level. Significance levels: c: 0.1, b: 0.05, a: 0.01.
The management score is from the World Management Survey up to 2015 . The management score, time
zone differences, and log GDP per capita are all standardized to facilitate interpretation of the coefficients.

Table 2 reports the regression results. Country characteristics are all standardized to

facilitate interpretation. In Columns 1–3, we control for industry-year and country-year

fixed effects, and in the other columns, we further control for business group or business

group-firm age fixed effects. In general, we find that the management score and GDP per

capita are negatively associated with the AR(1) coefficient of forecast errors, whereas time

zone differences affect the coefficient positively.14 If we view the AR(1) coefficient as a

measure for information frictions, these results are consistent with our hypotheses that better

management, more similar time zones, and higher income levels are negatively associated

with the severity of firm-level information frictions.

Schoellman (2021), but it can also reflect other barriers to collecting information about firm-level fundamen-
tals.

14In Appendix A.6, we perform extra robustness checks. We show that our results are robust to controlling
for interaction terms between previous forecast errors and firm age. In addition, we run horse race regressions
between the time zone difference and GDP per capita, and find results that are similar to those obtained
when we include them in the regressions separately.
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3 Model

In this section, we develop a dynamic industry equilibrium model with Jovanovic (1982)-

type learning embedded as in Arkolakis, Papageorgiou, and Timoshenko (2018). We use this

model to rationalize the aforementioned stylized facts and to quantify the role of imperfect

information in determining productivity losses in the aggregate using our firm-level data.

3.1 Setup

In our model, time is discrete with periods t = 1,2,..., and the representative consumer spends

income Yt on goods produced by monopolistically competitive firms. Consumer utility from

consuming qt(ω) units of different products ω can be expressed using the quantity of the

following constant elasticity of substitution (CES) aggregate:

Qt =

(∫
ω∈Ωt

e
θ(ω)
σ qt(ω)

σ−1
σ dω

) σ
σ−1

, (3)

where σ is the elasticity of substitution between different varieties, θ (ω) is the demand shifter

for variety ω, and Ωt denotes the set of varieties available at time t. We can express the

demand for a particular variety, ω, as:

qt(ω) = YtP
σ−1
t eθ(ω)pt(ω)−σ, (4)

where Pt ≡
(∫

ω∈Ωt
eθ(ω)pt(ω)1−σdω

)1/(1−σ)

is the price index of the industry.

The firm-specific demand, θ (ω), is unknown to the firm but the firm understands that

θ (ω) is drawn from a normal distribution N
(
θ̄, σ2

θ

)
. We assume that the firm cannot fully

uncover its permanent demand draw θ (ω) from its realized sales, given that it is faced with

constraints in collecting and processing information. Instead, the firm receives a noisy signal

about the permanent demand draw θ (ω) and needs to learn about it over the life cycle:

st (ω) = θ (ω) + εt(ω), (5)
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where εt(ω) is an independent and identically distributed (i.i.d.) noise term drawn from

a normal distribution N (0, σ2
ε). The noise term can reflect errors in managing and sharing

financial data inside the firm, and thus managers are unable to precisely determine the

implied demand draw θ (ω) from available information, such as realized sales.

At the beginning of each period, a firm that is n + 1 (n ≥ 1) years old has observed

noisy signals of the permanent demand draw in the past n periods: s1, s2, . . . , sn. Because

both the prior and the noisy signals are normally distributed, Bayes’ rule implies that the

posterior belief about θ is normally distributed with mean µn and variance σ2
n:

µn =
σ2
ε

σ2
ε + nσ2

θ

θ̄ +
nσ2

θ

σ2
ε + nσ2

θ

s̄n, σ2
n =

σ2
εσ

2
θ

σ2
ε + nσ2

θ

, (6)

where the history of signals (s1, s2, . . . , sn) is summarized by age n and the average signal of

the permanent demand draw: s̄n ≡ 1
n

∑n
i=1 si for n ≥ 1 and s̄0 ≡ θ̄. For age-one firms (i.e.,

entrants), their belief about the mean and variance of θ is the same as the prior belief, i.e.,

µ0 = θ̄, σ2
0 = σ2

θ .

As we will show below, our chosen information structure generates the aforementioned

age-declining serially correlated forecast errors about sales (Fact 2).15 The key is that εt(ω)

is payoff irrelevant, being purely informational and orthogonal to firms’ per-period profits.

If εt(ω) is payoff relevant (as in Jovanovic (1982) and Arkolakis et al. (2018)), we show that

sales forecast errors are serially uncorrelated in Appendix B.6.16

Output is linear in labor with qt = ϕtlt and firms hire workers at the wage rate of w.

Firms’ labor productivities follow an AR(1) process, where the variance of the shock is age-

15Not only a constraint in collecting and processing information but also a lack of knowledge about under-
lying model structures can lead to serially correlated forecast errors. To make our quantitative decomposition
of forecast errors transparent, we incorporate only the former but not the latter. See Ryngaert (2017) for
the quantitative importance of each channel for inflation forecasts.

16If the firm-specific demand shifter has both permanent and transitory components, then the forecast
error in period t + 1 is independent of its lagged values, as all past forecast errors are linear functions of
realized and forecasted demand shifters up to period t, which are in the firm’s information set by the end
of period t. However, in our model, the realized demand shifter, θ, is never observed, so the forecast error
in period t + 1 is only orthogonal to the forecast made in period t − 1, but not to the forecast error in
period t. Further details are available in Appendix B.6. Alternative shock processes such as learning about
a time-varying firm demand θt that follows an AR(1) process also imply zero forecast errors (see Appendix
B.7).
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dependent. Replacing the time subscript with firm age n, we can write the productivity

process as

logϕn = (1− ρ)µϕ + ρ logϕn−1 + νn, νn ∼ N(0, σ2
νn).

Following Atkeson and Kehoe (2005), we assume age-dependent volatility. Specifically,

we model the decline of σνn using a quadratic function up to an age cutoff. This captures the

decline in the variance of forecast errors over the firm’s life cycle owing to mechanisms other

than learning (e.g., customer accumulation and product diversification). We include this

term in our model to tease out the contribution of life-cycle learning to the (total) decline

in the variance of forecast errors. Information on autocovariance and variance of forecast

errors helps us separately identify the learning mechanism and the age-dependent volatility,

as age-dependent productivity shocks do not generate autocovariance.

At t, incumbents receive an exit shock (η) randomly, and surviving firms decide whether

to stay in the market by paying a fixed cost (f). Then, firms decide on the number of

workers (lt) before labor productivity (ϕt) is realized. The price (pt) is set at the end of the

period, assuming no storage technology. Next, firms observe new signals (st) and update

their beliefs.

In each period, a unit mass of potential entrants decides whether to enter the market.

They draw a permanent demand shifter (θ) and initial labor productivity (ϕ0) from the

normal and log-normal distributions, respectively. Potential entrants know the distribution

of θ and have perfect information about ϕ0. Entrants with a sufficiently high ϕ0 choose to

enter and produce in the market.

3.2 Static and Dynamic Optimization

In this subsection, we study the firm’s static optimization problem. As we focus on firms’

behavior in the steady state (i.e., the stationary equilibrium) in what follows, we omit the

subscript t whenever possible, and use the age subscript n when necessary. In each period,

the firm’s output decision is a static choice. Given the belief about θ and ϕn, an age-n
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firm hires ln workers to maximize its expected per-period profit, E (πn|ϕn−1, s̄n−1, n). The

realized per-period profit is πn = pnqn − wln − wf , where qn = ϕnln and firms set price pn

to clear the market according to equation (4). Maximizing E (πt|ϕt−1, s̄n−1, n), the optimal

employment is:

ln =

(
σ − 1

σ

)σ (
b (ϕn−1, s̄n−1, n− 1)

w

)σ
Y P σ−1, (7)

where:

b (ϕn−1, s̄n−1, n− 1) ≡ E
(
e
θ
σϕ

σ−1
σ

n |ϕn−1, s̄n−1, n
)

= exp

{
µn−1

σ
+
σ2
n−1

2σ2
+
σ − 1

σ
((1− ρ)µϕ + ρ logϕn−1) +

(σ − 1)2σ2
νn

2σ2

}
, (8)

and n is the firm’s age. We write the resulting price function in Appendix Section B.2, and

the expected per-period profit function is:

Eπn = (σ − 1)σ−1σ−σY P σ−1 b (ϕn−1, s̄n−1, n− 1)σ

wσ−1
− wf. (9)

In each period, the potential entrant chooses whether to enter the market and the in-

cumbent firm chooses whether to stay in the market. For an incumbent firm that is n + 1

years old, its state variables include the labor productivity ϕn, the history of demand signals

summarized by s̄n, and its age n in the last period.17 The incumbent firm’s value function

(after the random death shock is realized) satisfies:

V (ϕn, s̄n, n) = max{0, Enπn+1 + β(1− η)EnV (ϕn+1, s̄n+1, n+ 1)}, n ≥ 1. (10)

If the firm chooses to exit permanently, it receives a value of zero.

For an entrant that survives the exogenous death shock, its value function has the same

format as equation (10) as long as we set n = 0. We denote the corresponding policy function

as o(ϕn, s̄n, n), which applies to staying or exiting. The definition of equilibrium is contained

17As all the distributions are normal (e.g., the demand shifter and the noisy signal), the firm only needs to
forecast the mean and variance of the demand shifter. As a result, the average signal of the demand shifter
and firm age (which pins down the subjective variance of the demand shifter) are the two state variables
that are sufficient to formulate the learning problem faced by the firm.
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in Appendix B.2.

4 Decomposing Forecast Errors

In this section, we show how our model matches Facts 1 and 2 presented in Section 2. As will

become clear below, learning contributes to both (1) the age-declining variance of forecast

errors, and (2) the age-declining autocovariance of forecast errors, while the age-dependent

volatility only generates the former. This insight from our model allows us to decompose

the variance of forecast errors into learning and age-dependent volatility components. We

illustrate the intuitions by using a special case in which the per-period fixed cost is set to

zero. In this case, the value of being active in a market is positive for all potential entrants

and incumbents. Therefore, all potential entrants enter, and firms do not exit unless they

are hit by the exogenous exit shock. We sometimes refer to this case as “no (endogenous)

selection.”

Proposition 1 When the per-period fixed cost, f , is set to zero, the forecasts and forecast

errors of firm sales have the following properties in the steady state:

1. The variance of forecast errors declines with age.

2. Forecast errors made in two consecutive periods by the same firm are positively corre-

lated. The positive covariance declines with age.

3. The difference between the variance of forecast errors (made at age n) and the auto-

covariance of forecast errors (made at age n− 1 and n) has a one-to-one relationship

with the (age-dependent) volatility of productivity shocks.

Proof. See Appendix B.1.

Both life-cycle learning and age-dependent volatility contribute to the age-declining vari-

ance of forecast errors. First, firms accumulate more experience and thus have clearer infor-

mation on their permanent demand when they become older, which makes the variance of
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forecast errors smaller. Second, as we assume that the variance of productivity shocks, σνn ,

declines with firm age, the variance of forecast errors declines exogenously when the firm

becomes older.

The above proposition also rationalizes the finding of the serially correlated forecast

errors presented in Section 2.2, as firms adjust their posterior beliefs on the demand shifter

gradually. In other words, firms incorporate new demand signals partially into their posterior

beliefs. As a result, a firm is more likely to under-predict (or over-predict) its next-year sales

if it has under-predicted (or over-predicted) its current-year sales. This leads to the positive

autocorrelation of forecast errors.18 Moreover, as a more experienced firm makes smaller

forecast errors, the autocovariance of forecast errors declines with years of experience.

In more detail, the reason why only the forecast error of the demand shifter is serially

correlated is related to the firm’s information set. In our model, the realized demand shifter

(θ) is never observed by the firm, and only past signals and forecasts are in the firm’s

information set. Thus, the forecast error of the demand shifter in period t + 1 (for the

forecast made in period t) is orthogonal only to the forecast made in period t − 1, not

orthogonal to the forecast error in period t (which equals θ minus the forecast made in

period t− 1). For the forecast error of productivity, both the realized productivity and past

forecasts are in the firm’s information set. Thus, the forecast error of productivity in period

t+1 is orthogonal to both the productivity in period t and the forecast made in period t−1.

As the forecast error in period t is the difference between these two, it is orthogonal to the

forecast error in period t+ 1.

Finally, we emphasize that the full-information rational expectation (FIRE) models can-

not rationalize the serially and positively correlated forecast errors. In Appendix B.4, we

show that FIRE models without endogenous selection imply zero autocorrelation in forecast

errors. Moreover, in Appendix B.5, we show that FIRE models with endogenous selection

generate negatively correlated forecasting errors under perfect information with AR(1) type

18However, this does not mean that firms make biased forecast errors on average. Specifically, positive
and negative forecast errors are canceled out over time when we take the average forecast error.
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productivity/demand shocks.19

4.1 Nonparametric Decomposition

The above proposition illustrates how we can back out the learning parameters (σθ and σε)

and age-dependent volatility separately by using the panel data of forecast errors. To make

the intuitions salient, we assume zero per-period fixed costs (no selection).20 Under this

assumption, the forecast errors of sales at age n are:

FEn,n+1 ≡ log
Rn+1

EnRn+1

=
θ

σ
− logEn(e

θ
σ )︸ ︷︷ ︸

FEθn,n+1

+
σ − 1

σ
logϕn+1 − logEn(ϕ

σ−1
σ

n+1)︸ ︷︷ ︸
FEϕn,n+1

, (11)

where the first two terms, denoted by FEθ
n,n+1, represent the forecast errors that arise because

of the firm’s imperfect information about θ. The third and fourth terms, denoted by FEϕ
n,n+1,

represent the forecast errors that arise from the unpredictable innovation in the firm’s AR(1)

productivity process. As shown in Appendix B.1, the term FEϕ
n,n+1 is linear in the innovation

term νn+1, which is uncorrelated with FEϕ
n−1,n (linear in νn). By contrast, the term FEθ

n,n+1

is serially correlated because firms never observe θ and gradually update their beliefs about

θ with noisy signals. The calculation shows that the covariance and variance of FEn,n+1 are:

Cov(FEn−1,n, FEn,n+1) =
σ2
n

σ2
; V ar(FEn,n+1) =

σ2
n

σ2
+

(σ − 1)2σ2
νn

σ2
, (12)

where σ2
n is the perceived variance of the demand shifter of age-n + 1 firms and σ is the

elasticity of substitution.

We can perform a nonparametric decomposition of V ar(FEn,n+1) into the learning com-

ponent and the age-dependent volatility component using the two formulas together. Specif-

19In this case, we compute autocorrelations of forecast errors for firms that have survived for at least two
consecutive periods. If a firm receives a more positive productivity shock in period t, it can afford a more
negative productivity in period t + 1 and remain in the market. Selection leads to negatively correlated
productivity shocks in periods t and t + 1 conditional on firm survival. As forecast errors come from
the unpredictable productivity shocks, the forecast errors in two consecutive periods are also negatively
correlated.

20In Section 5, we show that these moments continue to tightly pin down the parameters related to learning
and volatility effects when per-period fixed costs are strictly positive.
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ically, the covariance of forecast errors is only related to learning, as age-dependent volatility

does not enter into the expressions. When we take the difference between the variance

and the autocovariance of forecast errors, the only term that is left is the (age-dependent)

variance of the firm’s productivity shocks (multiplied by a constant):

V ar(FEn,n+1)− Cov(FEn−1,n, FEn,n+1) =
(σ − 1)2σ2

νn

σ2
. (13)

Note that our decomposition is “nonparametric” in the sense that we do not impose any

structure on σνn .

Table 3: How Learning and Age-Dependent Volatility Contribute to the Declining Variance
of Forecast Errors

(1) (2) (3) (4) (5)

Age n V ar(FEn) Cov(FEn−1, FEn)
Cov(FEn−1,FEn)

V ar(FEn)

Cov(FEn−1,FEn)−Cov(FE1,FE2)

V ar(FEn)−V ar(FE2)
V ar(FEn)− Cov(FEn−1, FEn)

1 0.242 – – – –
2 0.174 0.034 19.8% – 0.139
3 0.135 0.019 14.5% 38.3% 0.115
4 0.110 0.020 18.5% 22.0% 0.089
5 0.098 0.013 12.9% 28.8% 0.086
6 0.097 0.014 14.5% 26.5% 0.083
7 0.088 0.014 16.0% 23.7% 0.074
8 0.087 0.008 9.1% 30.5% 0.079
9 0.081 0.009 10.9% 27.6% 0.072
10 0.069 0.008 11.9% 25.0% 0.061
11 0.069 0.008 11.3% 25.4% 0.061

Notes: We have simplified the notation in this table so that FEn,n+1 ≡ FEn. Columns 1 and 2 report the variance and

covariance of the log forecast errors of firms at different ages in our data. Column 3 reports the ratio,
Cov(FEn−1,FEn)

V ar(FEn)
,

in percentage terms. The ratio indicates how much the covariance component (driven by learning) contributes to the level
of V ar(FEn). Column (4) reports the share contributed by the reduction in Cov(FEn−1, FEn) in the overall reduction in

V ar(FEn). Mathematically, it equals
Cov(FEn−1,FEn)−Cov(FE1,FE2)

V ar(FEn)−V ar(FE2)
. Column (5) reports the difference between Columns 1

and 2. According to the equation (13), this term is driven by age-dependent volatility and equals
(σ−1)2σ2

νn+1

σ2 . Note that all
these decompositions are made under the assumption that the fixed cost is zero (no selection). There are empty cells (indicated
by dashes) because we do not observe firms’ sales expectations upon their entry, i.e., E0(R1), and FE0,1 cannot be measured
from the data.

Following this logic, we use Table 3 to implement the decomposition exercise. Columns 1

and 2 of the table indicate the variance and covariance of forecast errors at age n in the data,

whereas Column 5 is the difference between the two, capturing age-dependent volatility. In

terms of levels, in general, the learning component (covariance terms) is small, explaining

about 10% to 20% of the variance of the forecast errors (see Column 3, the ratio of Column

2 to Column 1). However, they have a larger contribution to the change in the variance of
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forecast errors over the firm’s life cycle, ranging between 20% to 40% (Column 4). This is

because the variance of shocks to labor productivity does not diminish to zero when firms are

sufficiently old, which levels up the overall variance of forecast errors and makes the ratios

in Column 3 small. In summary, both learning and age-dependent volatility are important

to account for the life-cycle dynamics of firms’ forecast errors.

5 Quantitative Analysis

In this section, we quantitatively assess the aggregate implications of imperfect information.

In contrast with Section 4, we now allow for selection at entry, which renders it infeasible

to derive a sharp mapping from structural parameters to autocovariance and variances of

forecast errors. We calibrate the full model in Section 5.1 and analyze the gains from

information improvements in Sections 5.2 to 5.4. We find that selection amplifies the gains

from removing information frictions.

5.1 Calibration

We use data moments taken from the foreign activities survey. We normalize the aggregate

demand shifter Y and wage rate w to one and the mean of the logarithm of the permanent

demand θ̄ to zero. We set the elasticity of substitution between varieties σ to four and the

discount factor β to 0.96 (assuming a real interest rate of 4% per annum).21 The exogenous

death rate η is set to 0.03 to match the exit rate of the largest 5% of firms above age 10. We

impose an age threshold to avoid considering learning and age-dependent volatility for these

firms, and only extremely negative shocks to labor productivity and the exogenous death

shock lead to exits (Panel A of Table 4).

In our calibration, learning is parameterized by the two parameters, σθ and σε. Guided by

the decomposition exercise in Section 4.1, two natural candidate moments are the covariance

21The gains from information increase in σ as in David et al. (2016), who set σ = 6 as their baseline
value but show more robustness checks with two other elasticity values 4 and 10. Our results are thus more
comparable to their results under a conservative choice of an elasticity.
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Table 4: Parameters Calibrated Without/By Solving the Model

Moments

Parameters Value Description Source/Target Data Model

Panel A: Calibrated without solving the model

σ 4
elasticity of substitution between dif-
ferent varieties

Bernard et al. (2003)

β 0.96 discount factor 4% real interest rate

η 0.03 exogenous death rate
exit rate of the largest 5% of firms
above age 10

Panel B: Calibrated by solving the model and matching moments

fm 0.0093 fixed cost average exit rate of incumbents 0.093 0.093
σθ 0.96 std of θ Cov(FEt−1, FEt) at age one 0.034 0.034
σε 1.36 std of ε Cov(FEt−1, FEt) above age ten 0.008 0.008
κ0 0.33 σνn = κ0 + κ1(1− n/10)2 Var(FE) above age ten 0.069 0.069
κ1 0.28 σνn = κ0 + κ1(1− n/10)2 Var(FE) above at age one 0.242 0.241

ρ 0.67 persistence in productivity V ar[log(Ǎn+1/Ǎn−1)]

V ar[log(Ǎn+1/Ǎn)]
− 1 0.664 0.666

of fixed effects for the youngest firms and the oldest firms. Loosely speaking, conditional on

other parameters, we calibrate σθ and σε so that the model can match the autocovariance of

fixed effects at ages one and two, and the autocovariance of fixed effects above age 10.

Learning contributes to the age-declining variance of fixed effects but only partially, as

discussed in Section 4.1. We let the age-dependent volatility reproduce the rest of the age-

declining variance of fixed effects. Following Atkeson and Kehoe (2005), we parameterize

the age-dependent volatility using a quadratic function:

σνn =


κ0 + κ1

(
10−n

10

)2
if n < 10

κ0 if n ≥ 10.

Therefore, σνn starts from a value of κ0 + κ1, then drops to and stays at κ0 after age 10.

We calibrate the two parameters so that the model can match the variance of forecast errors

above age 10 and the variance of forecast errors at age one.22

We are left with the choices for the two other remaining parameters: the per-period

22When mapping the model to the data, we use a mix of age-one and age-two firms to mimic age-one
firms in the data. Firms established in any month of the current fiscal year are considered age-one firms in
the data. Late entrants with little information about θ make their predictions in the same manner as an
age-one firm in the model, whereas early entrants behave like an age-two firm. We match the variance and
covariance of fixed effects of age-one firms in the data by using a mix of age-one and age-two firms in the
model, with shares close to 50% each, with the latter being slightly smaller due to exits. We use the same
strategy for other firm ages.
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fixed cost, f , and the AR(1) coefficient of the labor productivity process, ρ. For the former,

we target the average exit rate of incumbent firms. For the latter, we first compute the

“adjusted labor productivity” as:

log Ǎn = logRn −
σ − 1

σ
log ln =

θ

σ
+
σ − 1

σ
logϕn +

1

σ
log(Y ) +

σ − 1

σ
log(P ),

where θ is firm-specific but time-invariant and Y and P are aggregate variables that do not

vary across firms. The coefficient before log ln is important—with this adjustment, the term

related to expectation, b(ϕn−1, s̄n−1, n− 1), drops out from the labor productivity measure.

Then, to calibrate ρ, we use the following data moment:

V ar[log(Ǎn+1/Ǎn−1)]

V ar[log(Ǎn+1/Ǎn)]
− 1, n ≥ 10. (14)

23 Note that without selection, this formula provides an unbiased estimate for the persistence

parameter in a stationary AR(1) process, even in small samples (Lo and MacKinlay, 1988). In

our modified setting, taking the one- and two-period differences in Ǎn removes the permanent

demand shock θ. In addition, focusing on old firms ensures that σνn is constant, and we can

apply the same argument as in Lo and MacKinlay (1988). Endogenous selection breaks the

one-to-one mapping between this moment and ρ. However, we find that selection creates a

very small bias, and that this moment tightly pins down ρ.

In Panel B of Table 4, we list the parameters and moments in an order such that, loosely,

the moment provides the most information on the parameter in the same row. All moments

are matched precisely. The calibrated σθ and σε are 0.96 and 1.36, respectively, implying

a signal-to-noise ratio of 0.50. We find the value of ρ to be 0.67, very close to the data

counterpart of equation (14).

We show that the calibrated model closely matches the evolution of the variance and

covariance of forecast errors over firms’ life cycles, despite the fact that we are only targeting

these moments at age one and above age 10. We show that our model also captures the

23As P and Y do not vary across firms, they drop out from the variance. Moreover, θ drops out from the
difference in the logarithm of “adjusted labor productivity,” as it is time-invariant.
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increase in average firm sales and the decline in the standard deviation of firm growth as

firms become older. We refer the reader to Appendix C.1 for details.

5.2 Comparative Statics: Intensive and Extensive Margins

We first consider a change in the information environment by changing the value of σε,

holding other parameters fixed at the values described above. Our baseline σε is 1.36, and

we vary it between 0.10 and 2.50, with the highest value corresponding to the region with the

highest σε, as we show in our by-region calibration in Section 5.4. In addition, we consider

a case where information about θ is perfect in that entrants know the true value of θ.

Figure 3 plots the impact of information frictions on aggregate outcomes. We compare

our baseline model to a version of our model without selection. In Figure 3, the blue curves

with dots summarize the comparative statistics with respect to σε in the baseline model.

The red curves with square markers indicate the same comparative statistics with respect to

σε in the model where we set the per-period fixed costs f to zero. In both models, the price

index increases with σε (top left panel), whereas labor productivity decreases with σε (top

right panel), with the slope being steeper in the baseline model.

These productivity losses stem from the effects that operate through both intensive and

extensive margins. For the intensive margin, we show that the correlation between firm

capability (log φ ≡ (σ − 1) logϕ+ θ) and production scale (log b) decreases with σε (middle

left panel).24 This is because more severe informational imperfections tend to make firms

with low demand θ produce too much, and vice versa for firms with high demand. Imprecise

knowledge about demand θ makes output choice far from the optimal level at the intensive

margin, which can be seen by the fact that the correlation between the true demand θ and

the average of past noisy signals s̄ decreases with σε (middle right panel).

24 Firm capability term log φ is a combination of firm labor productivity ϕ and its permanent demand
shifter θ. Scaling logϕ by the coefficient σ − 1 ensures that this term solely determines firm-level output
in a perfect information static model. In our dynamic imperfect information model, b is the only firm-level
variable that determines expected profit (see equations (8) and (9)). In a perfect information static model,
log b is linear in log φ and thus the correlation is one.
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Figure 3: The Impact of σε on Aggregate Outcomes

(a) Q/L (b) P

(c) Corr (log φ, log b) (d) Corr (θ, s̄)

(e) Average Incumbent θ (f) Relative Mass of Firms: M
Notes: Panels (a) to (f) show the aggregate industry price index, labor productivity, the correlation between
log(φ) and log(b) among incumbents, the correlation between θ and s̄ among incumbents, the average in-
cumbent’s θ, and the equilibrium mass of firms under different fixed costs f and different values of σε. All
variables are normalized to one in the case that σε = 1.36, the calibrated value in our baseline model. log φ
is defined as the combination of labor productivity and demand, (σ− 1) logϕ+ θ, which determines the size
of the firm in a static model. b is defined as in equation (8). The blue dotted line indicates a model with
fixed costs f at the value in the baseline calibration, whereas the red line with squares indicates a model
with zero fixed costs (no selection).
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For the extensive margin, the average demand shifter (of active firms) decreases with

σε (bottom left). More severe information imperfection causes firms with low demand but

high values for noises to enter (and stay), whereas firms with high demand but low values

for noises exit. This selection effect is similar to the one studied in Sager and Timoshenko

(2021). Active firm mass increases with σε (bottom right), as less tough competition (induced

by more severe information imperfection) makes more firms stay. These effects are absent

without selection (red curves with square markers). In this alternative model, the price

index and labor productivity are only affected through the intensive margin, as all potential

entrants (other than those that exit exogenously) are active in production.

Table 5: Aggregate Outcomes under Different σε

Panel A: f = 0.0093 (benchmark) (1) (2) (3)

Statistics
High Info. Friction

σε = 2.50
Baseline Info. Friction

σε = 1.36 Perfect Info.

Mass of Active Firms 11.224 10.359 9.046
Incumbents Average θ 0.591 0.764 1.046
Incumbents Average θ + (σ − 1) logϕ 0.187 0.231 0.315
Q/L 3.482 3.623 3.853
∆% Q/L -3.88 6.36

Panel B: f = 0 (1) (2) (3)

Statistics
High Info. Friction

σε = 2.50
Baseline Info. Friction

σε = 1.36 Perfect Info.

Mass of Active Firms 32.333 32.333 32.333
Incumbents Average θ 0 0 0
Incumbents Average θ + (σ − 1) logϕ 0 0 0
Q/L 4.528 4.624 4.794
∆% Q/L -2.08 3.66

Notes: This table reports the equilibrium outcomes under a high level of information frictions (σε = 2.50), the baseline model
(σε = 1.36), and perfect information, with different values of fixed costs (baseline value, 0.0093, and alternative value, 0). As
explained in footnote 24, the term θ+ (σ − 1) logϕ can be interpreted as “firm capability,” which uniquely determines a firm’s
size in a perfect information static model.

Table 5 shows the quantitative implications and highlights the role of selection. Labor

productivity increases by 6.35% in our baseline model with selection, whereas it increases by

3.66% in the alternative model where the extensive margin does not play a role. Our com-

parative statistics show not only a substantial gain in overall productivity from eliminating

the informational frictions over the firm’s life cycle, but also the role of firm entry and exit

in driving it.
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5.3 Heterogeneous Effects Across Different Age Groups of Firms

One feature of our model is the gradual resolution of uncertainty over the life cycle of firms.

Entrants and young firms face more severe informational imperfections and learn the true

values of their demand shifters over time, while deciding in each period whether to stay or

exit from the market. We proceed with the analysis to see how firms in different age groups

are affected differently by the elimination of the information frictions and how much each

age group’s productivity change contributes to the overall productivity gains in the economy.

Consistent with the expression of aggregate output in equation (3), we define the average

productivity of age-n (n ≥ 1) firms as:

An ≡
Qn

Lprodn

=

(∫
ω∈Ωn

e
θ(ω)
σ qn(ω)

σ−1
σ dω

) σ
σ−1

Lprodn

, (15)

where Lprodn is the number of workers used in production of all age-n firms, excluding workers

used to pay for the fixed cost. Ωn is the set of active age-n firms and qn(ω) is the output of

the firm that produces variety ω. Note that entrants are age-one firms, whereas incumbents

are older than one. We define the average productivity of firms of all ages as:

A ≡

(∑
n

∫
ω∈Ωn

e
θ(ω)
σ qn(ω)

σ−1
σ dω

) σ
σ−1

Lprod
=

 N∑
n=1

A
σ−1
σ

n

(
L̄prodn Mn

L̄prod
∑N

n=1Mn

)σ−1
σ


σ
σ−1

,

where Lprod =
∑N

n=1 L
prod
i , and N is the maximum age that we consider in the simulation.

In addition, L̄prodn is the average employment of production workers of age-n firms, and L̄prod

is the average employment of production workers of all firms. Mn ≡
∫
ω∈Ωn

dω is the measure

of age-n firms that are active. Then, we define the normalized productivity Ãn = AnM
1

1−σ
n .

Note that the difference between Ãn and An is that the former does not take into account

the variety effect, reflected by the number of active firms in our model.

Finally, the log (or percentage) change in average labor productivity can be decomposed
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as:

dA

A
=

N∑
n=1

[
contrin

(
d log(Ãn) +

σ

σ − 1

dfracn
fracn

+ d log

(
L̄prodn

L̄prod

))]
+

1

σ − 1

dM

M
, (16)

where the weight is defined as contrin ≡ fracnÃ
σ−1
σ

n

(
L̄prodn

L̄prod

)σ−1
σ
/
∑N

n=1 fracnÃ
σ−1
σ

n

(
L̄prodn

L̄prod

)σ−1
σ

and fracn is the fraction of active firms that are n years old among all active firms. The

total mass of active firms is simply denoted by M =
∑N

n=1Mn.

There are four terms related to the change in average productivity in equation (16).

First, the term d log(Ãn) is the change in normalized productivity for each age group. Sec-

ond, σ
σ−1

dfracn
fracn

reflects the change in population shares for different age groups. Third,

d log
(
L̄prodn

L̄prod

)
is the change of the average size of age-n firms (relative to the overall mean).

The final term, 1
σ−1

dM
M

, reflects the variety effect. Figure 4 plots these terms when we move

from our baseline level of imperfect information (with σε = 1.36) to perfect information

wherein all entrants know the true value of θ. In Figure 4, the blue curves with dots show

the results for our baseline model, where only some firms enter and stay active, whereas

the red curves with square markers indicate the results for an alternative model without

selection, in which the per-period fixed costs f are set to zero.
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Figure 4: Decomposing the Impact of σε Across Age Groups: σε = 1.36→ Perfect Informa-
tion

(a) d log Ãn (b) σ
σ−1

dfracn
fracn

(c) d log(L̄prodn /L̄prod) (d) Firm Mass
Notes: Panels (a) to (c) plot the three key components in the change in normalized industry labor pro-
ductivity according to equation (16), contributed by firms of different ages n (capped at 10 years), when
changing the model from the baseline of imperfect information (σε = 1.36) to a dynamic model in which
firms have perfect information about θ. The blue dotted line represents the case in which the fixed costs f
are kept at the baseline value, 0.0093. The red line with squares represents the case where f = 0, i.e., the
case without endogenous selection. Panel (d) shows the mass of firms at different ages in the imperfect and
perfect information model, respectively.

Panel (a) shows that the (normalized) productivity gains are larger among young firms

than old firms in both our models, but more so in our baseline model with selection (blue

curves with dots). In Panel (b), the population shares of young and old firms change sig-

nificantly in the baseline model but not in the alternative model (red curves with square

markers). Selection becomes tougher when the information frictions become less severe, and

this leads to a “better” selected group of firms operating in the economy. We discussed

this in the previous section, but we now observe that this extensive margin effect operates
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more prominently among young firms. Note that selection is more relevant for young firms

(given the information environment), as the exit rate flattens (with respect to age) for suf-

ficiently old firms. Therefore, this age-specific selection effect makes the (normalized) age

group-specific productivities increase and the population shares decrease more for young

firms than old firms. These findings highlight the importance of post-entry selection espe-

cially among young firms. Relatedly, the average size of firms increases for young firms but

decreases for old firms in Panel (c). Panel (d) shows a decline in the mass of firms for each

age group after σε declines, but only in the baseline model with selection.

5.4 Cross-Regional Analysis

As suggested by Fact 3 in Section 2.2, firms may face different levels of information frictions

due to varying management practices and communication barriers in different countries. We

use our model to quantify the degree of information frictions across countries/regions and

demonstrate the potential gains from eliminating them. This allows us to use economies

with smaller information frictions instead of an economy with perfect information as the

benchmark, following a long tradition in the misallocation literature (Hsieh and Klenow

(2009); David et al. (2016)).

We use data from eight major regions/countries of the world: Africa, the Middle East,

Latin America, Eastern Europe, the Association of Southeast Asian Nations (ASEAN) coun-

tries, China, Western Europe, and the United States.25 Similar to the baseline calibration,

we target the covariance and variance of the youngest and oldest firms, together with the

incumbent exit rates in each region. Panel A of Table 6 presents the calibrated parame-

ters by region and the corresponding model moments. Each set of parameters enables us

to precisely match the data moments, so we omit them from the table to save space, and

report them in Appendix C-27. We find that Africa, the Middle East, Latin America, and

25These eight regions do not exhaust all foreign countries in which Japanese multinational firms operate,
but they cover the majority of firm sales in our data. In addition, they display significant differences in
income levels and business environments, and contain countries that are relatively homogeneous within each
region. Appendix Table C-26 provides the full list of countries in each region.
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Eastern Europe have higher values of σε than the other regions, which are driven by their

higher covariance of forecast errors targeted in the calibration. Firms in Latin America and

Eastern Europe are revealed to have higher values of σθ than the other regions.

Table 6: Calibration and Gains from Eliminating Information Frictions by Region

Parameters Model Moments Info. Gains

Region σθ σε σ2
θ/σ

2
ε σν1 σν10 f Cov1 Cov10 V ar1 V ar10 exit rate %∆ Q/L

Panel A: Change five parameters

Africa 0.86 2.57 0.11 0.51 0.37 0.0152 0.040 0.020 0.186 0.100 0.105 12.56
Middle East 0.83 2.64 0.10 0.58 0.45 0.0142 0.038 0.019 0.226 0.134 0.102 12.16
Eastern Europe 1.41 1.80 0.62 0.58 0.32 0.0079 0.068 0.014 0.283 0.072 0.101 9.44
Latin America 1.62 1.66 0.95 0.39 0.39 0.0070 0.073 0.013 0.218 0.097 0.103 7.13
ASEAN 0.44 1.61 0.08 0.70 0.34 0.0074 0.011 0.006 0.264 0.073 0.078 3.68
China 1.12 1.48 0.57 0.64 0.31 0.0074 0.044 0.010 0.276 0.065 0.089 7.16
Western Europe 0.91 1.47 0.39 0.50 0.31 0.0131 0.034 0.009 0.179 0.065 0.106 6.95
United States 0.78 1.49 0.27 0.52 0.31 0.0147 0.028 0.009 0.180 0.063 0.110 7.11

Panel B: Change four parameters, fix f

Africa 0.86 2.57 0.11 0.51 0.37 0.0093 0.039 0.020 0.184 0.098 0.073 9.77
Middle East 0.83 2.64 0.10 0.58 0.45 0.0093 0.037 0.018 0.225 0.130 0.074 9.83
Eastern Europe 1.41 1.80 0.62 0.58 0.32 0.0093 0.068 0.015 0.281 0.072 0.112 9.86
Latin America 1.62 1.66 0.95 0.39 0.39 0.0093 0.071 0.014 0.219 0.098 0.125 7.84
ASEAN 0.44 1.61 0.08 0.70 0.34 0.0093 0.012 0.006 0.268 0.072 0.103 4.04
China 1.12 1.48 0.57 0.64 0.31 0.0093 0.042 0.010 0.280 0.065 0.104 7.70
Western Europe 0.91 1.47 0.39 0.50 0.31 0.0093 0.034 0.010 0.177 0.066 0.081 5.93
United States 0.78 1.49 0.27 0.52 0.31 0.0093 0.029 0.008 0.177 0.063 0.077 5.55

Notes: Panel (A) shows the results when we re-calibrate five parameters for each region (σθ, σε, κ1, κ0, f). We present
age-dependent volatility σν1 , σν10 instead of κ1, κ0 to facilitate interpretation. We target five moments in this calibration,
Cov(FEn−1,n, FEn,n+1) for n = 1 and n ≥ 10, V ar(FEn,n+1) for n = 1 and n ≥ 10 and incumbent exit rates. %∆Q/L is the
percentage change in labor productivity when we change the model from the calibrated imperfect information case to perfect
information. Panel (B) reports the results when we re-calibrate the learning and uncertainty related parameters but keep the
fixed costs at the baseline value of f = 0.0093. We target the first four moments but do not attempt to match the exit rates
in the data. The model matches the data moments well (other than the untargeted exit rates in Panel B). To save space, we
report the data moments in Appendix Table C-27. A full list of countries in each region can be found in Appendix Table C-26.

We use calibrated economies to assess productivity gains from eliminating informational

imperfection. Moving from the calibrated economy to perfect information, σε = 0, we report

the increase in labor productivity in percentage terms in the last column of Panel A of Table

6. Regions with a larger σε and σθ tend to have larger gains. A high σε leads to noisier

signals and potentially more misallocation at both the intensive and extensive margins.26 A

higher σθ increases the benefit of eliminating the information friction, as there is much more

to learn over the life cycle. For instance, Africa and the Middle East feature the noisiest

26Firms in Latin America and Eastern Europe have higher values of σθ than the other regions, and their
signal-to-noise ratios are the highest among the eight regions. This is broadly consistent with the view that
firms acquire information optimally by paying a cost, which makes σε (or equivalently, the signal-to-noise
ratio, σ2

θ/σ
2
ε) endogenous to the level of σθ (see Sims (2003); Luo (2008); Mackowiak and Wiederholt (2009)).
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signals, and their gains from eliminating information frictions are as large as 12.56% and

12.16%, respectively. ASEAN countries and China have low gains owing to their low σθ and

σε. This makes sense, as ASEAN countries and China are close to Japan geographically,

which facilitates their Japanese affiliates’ communication with the parent firms and reduces

the forecast errors. Latin America and China have lower fixed costs, reducing their efficiency

losses due to extensive margin misallocation.27

Overall, we show that the degree of imperfect information and the associated aggregate

implications vary across regions/countries. For example, the productivity loss due to infor-

mation frictions in Africa is almost twice as large as that in Western Europe (5.6 percentage

points larger). Our results align with the notion that firms in developing economies face

more information frictions, which are likely to arise from poorer management practices, but

they also suggest that communication barriers, such as time zone differences, may lead to

information frictions.28 The first finding is in line with David et al. (2016), although learning

in our model is dynamic rather than static and our results are based on a broader set of

countries. The second finding is consistent with previous studies showing that time zone

differences become barriers to international business (in a different context, see Gumpert

(2018)). Our findings support the argument for improving management practices or com-

munication efficiency (e.g., having more nonstop flights between cities). As highlighted by

Hsieh and Rossi-Hansberg (2023), communication barriers exist even within a country such

as the United States, and the reduction of such barriers can improve productivities.

27As discussed in Section 5.2, a lower fixed cost reduces the efficiency loss due to the extensive margin
misallocation. Indeed, as is reported in Panel B of Table 6, when we keep the fixed cost at the baseline level
for all regions, the gains from eliminating informational imperfections in Latin America and China increase,
becoming about 1.9% to 2.2% higher than the gains in Western Europe and the United States, instead of
being 0.05% to 0.2% higher in Panel A.

28As our findings and associated productivity gains are based on a Japanese firm sample, we caution against
generalization. Domestic firms may face fewer information constraints because of lower communication
barriers, whereas foreign-owned firms may have better forecasting accuracy owing to superior management
practices, as extensively documented in the literature (Bloom and Van Reenen, 2007, 2010).
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6 Conclusion

We analyze firm-level panel data on sales forecasts to identify imperfect information and

its gradual resolution. The variance of forecast errors decreases with firms’ experience,

and the covariance of forecast errors is tightly linked to learning. We develop a model of

heterogeneous firms’ learning about their demand over their life cycle and show that learning

contributes to a 20%–40% decline in the variance of forecast errors. We use this model to

calibrate our cross-country data and measure potential gains from eliminating imperfect

information. We believe there are at least two avenues for future research. First, causal

evidence on how an improved information environment affects firm entry and exit would

strengthen our understanding of the effects of information frictions on resource allocation.

Second, given that the literature has identified different types of information frictions (static,

life-cycle, and dynamic information frictions of maturing firms, such as rational inattention),

it is crucial to propose a unified framework that can be used to quantify multiple sources

of information frictions jointly, as different types of information frictions can have different

policy implications.
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