#### Firm Heterogeneity, Credit Shocks and Business Cycles

Aubhik Khan

Ohio State University

ESRI International Conference

31 January 2018

Firm Heterogeneity and Business Cycles

31 January 2018 1 / 22

3

Sac

## Business Cycles and Heterogeneity

Quantitative analysis challenged by the (US) Great Recession. inconsistent with the canonical model of Kydland and Prescott 1982

Heterogeneous agent models offer insights into large recessions.

<u>Households</u> (amplify changes in aggregate consumption) Krueger, Mitman and Perri (2015)

Kim (2016)

Khan (2017)

Glover, Heathcote, Krueger and Rios-Rull (2015)

Guerrieri and Lorenzoni (2015)

#### Heterogeneous Firms

Uncertainty

Bloom et. al (forthcoming)

Senga (2016)

Credit Shocks

Khan and Thomas (2013)

Buera, Fattal Jaef and Shin (2015)

Jo (2017)

Khan, Senga and Thomas (2017).

#### The Great Recession in the United States



#### Japanese Business Cycle



#### Credit Shocks and Heterogeneity in Firms

- TFP fell relatively little compared to GDP and Investment.
- Credit shocks are better able to explain the recession.
- Heterogeneity is essential, average firm does not need to borrow.
- Quantitative importance depends on distribution of cash and debt.
  - borrowing by itself does not imply vulnerability to credit
  - ► firm data needed to further evaluate the mechanism

#### crisis evidence

Khan and Thomas (2013) 'Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity' Journal of Political Economy. Vol. 121, No. 6.

#### Overview of Results

Collateral constraints drive a firm life-cycle in the model.

- Younger, smaller firms are more leveraged.
- Growing gradually, they maintain leverage in a narrow range.
- Eventually, firms reduce debt. Some accumulate financial savings.

Credit shocks can cause large, lasting recessions.

- Gradual unraveling of TFP (increasing capital misallocation)
- Large declines in GDP and investment (future TFP effect)
- Smaller, more leveraged firms disproportionately affected (• BED figure)

#### Model

- firm production:  $y = z \varepsilon F(k, n)$ 
  - z aggregate shock and  $\varepsilon$  firm-level shock
  - labor from households (real wage  $\omega$ )
  - one-period debt with face value  $b' \in R$  (relative price  $q^{-1}$ )
- firm entering period identified by  $(k, b, \varepsilon)$ 
  - chooses *n*, repays *b*, chooses k', b', and *D*
  - survival probability:  $1 \pi_d$  (known before investment)
- 2 frictions influencing choices of k', b', and D
  - ▶ specificity of capital:  $\theta_k \in (0, 1)$  from each unit uninstalled
  - collateralized debt limit:  $b' \leq \theta_b[\theta_k k]$
  - $\blacktriangleright \ \theta_{b} \in \{\theta_{1},...,\theta_{N_{\theta}}\} \text{ with } \Pr\left(\theta_{b}' = \theta\left(m\right) \mid \theta_{b} = \theta\left(l\right)\right) \equiv \pi_{lm}^{\theta_{b}}$

#### Model

Households and Dynamic Stochastic General Equilibrium

equilibrium decision rules

$$C = C(s, \mu), \ N = N(s, \mu)$$

real wage

$$\omega(s,\mu) = D_2 u(C,1-N) / D_1 u(C,1-N)$$

risk free real interest rate

$$q(s, \mu) = \beta \sum \pi_{lm}^{s} D_1 u(C'_m, 1 - N'_m) / D_1 u(C, 1 - N)$$

stochastic discount factor

$$d_m(s,\mu) = \beta D_1 u(C'_m, 1 - N'_m) / D_1 u(C, 1 - N)$$

(S,s) decision rules of unconstrained firms  

$$k_{u}^{*}(\varepsilon; s, \mu) = \arg \max_{k'} \left[ -pk' + \beta \sum \sum \pi_{lm}^{s} \pi_{ij} W_{0}(k', 0, \varepsilon_{j}; s_{m}, \mu') \right]$$

$$k_{d}^{*}(\varepsilon; s, \mu) = \arg \max_{k'} \left[ -p\theta_{k}k' + \beta \sum \sum \pi_{lm}^{s} \pi_{ij} W_{0}(k', 0, \varepsilon_{j}; s_{m}, \mu') \right]$$

$$\mathcal{K}^{w}\left(k,\varepsilon;s,\mu\right) = \begin{cases} k_{u}^{*}\left(\varepsilon;s,\mu\right) & \text{if } k < \frac{k_{u}^{*}\left(\varepsilon;s,\mu\right)}{1-\delta} \\ \left(1-\delta\right)k & \text{if } k \in \left[\frac{k_{u}^{*}\left(\varepsilon;s,\mu\right)}{1-\delta}, \frac{k_{d}^{*}\left(\varepsilon;s,\mu\right)}{1-\delta}\right] \\ k_{d}^{*}\left(\varepsilon;s,\mu\right) & \text{if } k > \frac{k_{d}^{*}\left(\varepsilon;s,\mu\right)}{1-\delta} \end{cases}$$

Investment behaviour of any firm unaffected by borrowing conditions

▶ firm value

#### Analysis

• Firms distinguished by whether  $b' \leq \theta_b \theta_k k$  will ever bind

#### unconstrained firm

- ► shadow value of dividends and retained earnings are equal
- w.l.o.g. ignore b in determining  $k' = K^w(k, \varepsilon; s, \mu)$
- Compute a minimum savings policy, B<sup>w</sup> (k', ε; s, μ). This, alongside k', yields D<sup>w</sup> (k, b, ε; s, μ).

• constrained firm: binding constraint in some future state(s)

- ▶ shadow value of retained earnings exceeds that of dividends
- ▶ implication: D = 0,  $K^{c}(k, b, \varepsilon; s, \mu)$  implies  $B^{c}(k, b, \varepsilon; s, \mu)$

# Minimum Savings Policies

A financially unconstrained firm must follow a policy that ensures it is never subject to borrowing limits.

 $B^{w}(k,\varepsilon;\cdot)$  is the minimum savings to be unconstrained

$$B^{w}(k,\varepsilon_{i};s_{l},\mu) \equiv \min_{\{\varepsilon_{j}\mid\pi_{ij}>0 \text{ and } s_{m}\mid\pi_{lm}^{s}>0\}} \widetilde{B}(K^{w}(k,\varepsilon;\cdot),\varepsilon_{j};s_{m},\mu')$$
$$\widetilde{B}(k,\varepsilon;\cdot) \equiv D^{w}(k,0,\varepsilon;\cdot) + q\min\left\{B^{w}(k,\varepsilon_{i};\cdot),\theta_{b}\theta_{k}k\right\}$$

Payments  $D^w \ge 0$  to shareholders.

$$D^{w}(k, b, \varepsilon) \equiv z\varepsilon F(k, N(k, \varepsilon)) - \omega N(k, \varepsilon) - b - \mathcal{J}\left(\cdot\right) \left[K^{w}(k, \varepsilon) - (1 - \delta)k\right]$$

# A Summary of Firm Dynamics

- Unconstrained firms' capital policies do not depend on their financial savings or debt.
- A minimum savings policy preserves this independence
- Constrained firms cannot adopt both the capital and minimum savings decisions of unconstrained firms.
- Their capital choices are functions of their debt.
- They may not have binding borrowing constraints.

# Calibration

Functional forms and aggregate data

$$\begin{split} u(C,L) &= \log C + \varphi L \qquad z \varepsilon F(k,n) = z \varepsilon k^{\alpha} n^{\nu} \qquad k_0 = \chi \int k \widetilde{\mu} (d \left[ k \times b \times \varepsilon \right]) \\ \log \varepsilon' &= \rho_{\varepsilon} \log \varepsilon + \eta'_{\varepsilon} \qquad b_0 = 0 \end{split}$$

- $\beta$  : real rate = 0.04
- v : labor share = 0.60
- $\delta$  : investment/capital = 0.07
- $\alpha$  : capital/output = 2.3

- $\varphi$  : hours worked = 0.33
- $\theta_b$ : debt/assets = 0.372 (54Q1-06Q4)
- $\pi_d$ : exit rate of firms = 0.10
  - $\chi$  : new/typical firm size = 0.10

# Calibration

Firm data

| LRD                           | parameters                       |
|-------------------------------|----------------------------------|
| lumpy invest rate $= 0.186$   | $\overline{	heta_k}=0.95$ 4      |
| $\sigma(i/k) = 0.337$         | $ ho_arepsilon=$ 0.659           |
| $corr(i/k, i/k_{-1}) = 0.058$ | $\sigma_{\eta_arepsilon}=$ 0.118 |

• mean investment rate is 0.12 in data and 0.11 in model.

COMPUSTAT(1954-2011 averages)parameterscorr(size,leverage) = 0.022 $\omega_e = 0.291$  $\sigma(cash/size) = 0.16$  $\alpha_e = 0.225$ 

Aggregate cash to assets ratio was 0.10 in 2006 and 0.12 in model (Bates, Kahle & Stulz 2009).

## Credit Shocks

We assume  $\theta_b$  follows an independent 2-state Markov Chain with  $\theta_b \in \{1.38, \theta_l\}$  and transition probabilities,

$$\begin{array}{c|ccc} p_0 & 1-p_0 \\ 1-p_1 & p_1 \end{array}$$

- Reinhart and Rogoff (2009) report that the average number of banking crisis over 1945-2008 across advanced economics was 1.4.
- There have been 2 in the U.S. Financial crisis are rare events.
- Across advanced economies, 7 percent of time was spent in crisis.
- We choose  $p_0 = 0.97648$  and  $1 p_1 = 0.3125$  to imply 7 percent of time spent in crisis and an average duration of 3.2 years.
- We set  $\theta_I = 0.5$  to imply a 25 percent reduction in debt.

#### Steady state distribution for median productivity



new firm k: 0.15
avg constrained k: 1.8
avg unconstrained k: 2.0
constrained firms: 61% / with binding constraint: 24%
avg no constraint k: 1.54

#### business cycles

# Credit crisis with recovery in date 5

Peak-to-Trough Percent Changes GDP С TFP Ν -5.6-19.0-6.0-4.1-2.2data credit shock -4.4-21.8-3.4-1.0-1.3

A credit shock delivers the observed decline in GDP and

- I reproduces the disproportionate fall in investment
- (07Q4 09Q1 change was -2.71) (07Q4 09Q1 change was -2.71)
- ③ change in loans of -26.1 percent (data: -48 to -19 percent ♥ crisis evidence).

A TFP-shock will not explain GDP or investment and yields only a 4.1 percent (delayed) decline in debt.

|                    | GDP  | 1     | N    | С     | TFP  |
|--------------------|------|-------|------|-------|------|
| one s.d. TFP shock | -3.8 | -14.6 | -2.2 | -0.85 | -2.6 |

#### Evidence of disproportionate effect on small firms



net employment change in 1000s



#### Risky lending and and loan rate schedules

one period non-contingent debt

The collateral constraint is ad hoc, proxying for richer financial frictions.

$$q(k', b', \varepsilon_i; s_l, \mu) b' = \sum_{m=1}^{N_s} \pi_{lm}^s d_m(s_l, \mu) \sum_{j=1}^{N_\varepsilon} \pi_{ij}^\varepsilon \left[ \chi(x'_{jm}, \varepsilon_j; s_m, \mu') b' + \left(1 - \chi(x'_{jm}, \varepsilon_j; s_m, \mu')\right) \min\left\{b', \rho(1 - \delta) k'\right\} \right]$$

Endogenous collateral constraints as default risk constrains borrowing

An extensive margin amplifies the effect of credit shocks *depending on the distribution of leverage* (importance of firm level data)

Khan, Thomas and Senga (2017) 'Default Risk and Aggregate Fluctuations in an Economy with Production Heterogeneity'

# Growth Shocks with Entry and Exit

Changes in the Distribution of firms with an extensive margin

- Shocks to TFP growth rates
  - lost decades amplified by fall in business formation
- Default risk does not imply enough credit spread.
- Introduce a general equilibrium countercyclical stochastic discount factor (Epstein and Zin).
- Reproduce the size and age distribution of firms.
- Explore the long-run effects of a persistent reduction in entry.
- How do entry and exit respond to credit shocks?

## Concluding remarks

- Quantitative business cycle analysis is converging with policy makers' views.
- We now have models where a shock to credit markets can cause a large and protracted recession.
- The result is a disproportionate response in investment and output, and a small fall in TFP, consistent with the recent US recession.
- Future work needs to use firm-level data to better measure the quantitative significance of the model.
- What is the distribution of firms over productivity, capital and financial assets?

#### Related work

- Business cycle propagation through financial frictions
   Kiyotaki and Moore (1997)
- Emphasis on financial shocks
  - Jermann & Quadrini (2009): DSGE financial frictions model with credit shocks
- Emphasis on firm-level heterogeneity
  - Arellano, Bai & Kehoe (2010): Aggregate effects of shocks to firm-level risk

• overview

#### Fvidence

- Chari, Christiano and Kehoe (2008): stock of commercial and industrial loans across regulated banks rose in 2008Q3
- Koepke and Thomson (2011): over 2008Q4-2009Q4, it fell 18.7 percent
- Ivashina and Scharfstein (2009):2007-08, syndicated lending fell sharply
  - far larger market than lending by regulated banks
  - investment loans fell 48 percent
- Almeida, Campello, Laranjeira and Weisbenner (2009)
  - investment fell by one-third among firms with substantial debt maturing over the year following August 2007
  - no investment decline among otherwise similar firms

peak to trough • overview

#### Expected value of a firm

$$v_{0}(k, b, \varepsilon_{i}; s_{l}, \mu) = (1 - \pi_{d})v(k, b, \varepsilon_{i}; s_{l}, \mu) + \pi_{d} \max_{n} \left[ z_{l}\varepsilon_{i}F(k, n) - \omega(s_{l}, \mu)n + \theta_{k}(1 - \delta)k - b \right]$$

$$v\left(k, b, \varepsilon_{i}; s_{l}, \mu\right) = \max\left\{v^{u}\left(k, b, \varepsilon_{i}; s_{l}, \mu\right), v^{d}\left(k, b, \varepsilon_{i}; s_{l}, \mu\right)\right\}$$

given 
$$(\textbf{s}_{l},\mu)$$
 and  $\mu'=\Gamma(\textbf{s}_{l},\mu)$  with  $\textbf{s}_{l}=(\textbf{z}_{l},\theta_{b})$ 

#### ▶ decision rules

#### Upward capital adjustment

$$v^{\mu}(k, b, \varepsilon_{i}; s_{l}, \mu) = \max_{n, k', b', D} \left[ D + \sum_{m=1}^{N_{s}} \pi_{lm}^{s} d_{m}(s_{l}, \mu) \sum_{j=1}^{N_{\varepsilon}} \pi_{ij} v_{0}(k', b', \varepsilon_{j}; s_{m}, \mu') \right]$$

$$k' \ge (1-\delta) k$$
 and  $b' \le heta_b heta_k k$ 

 $0 \le D \le z_{l}\varepsilon_{i}F\left(k,n\right) - \omega\left(s_{l},\mu\right)n + q\left(s_{l},\mu\right)b' - \left[k' - (1-\delta)k\right] - b$ 

#### Downward capital adjustment

$$v^{d}(k, b, \varepsilon_{i}; s_{l}, \mu) = \max_{n, k', b', D} \left[ D + \sum_{m=1}^{N_{s}} \pi_{lm}^{s} d_{m}(s_{l}, \mu) \sum_{j=1}^{N_{\varepsilon}} \pi_{ij} v_{0}(k', b', \varepsilon_{j}; s_{m}, \mu') \right]$$

#### subject to:

 $k' \leq (1-\delta) k$  and  $b' \leq \theta_b \theta_k k$ 

$$0 \le D \le z_{l}\varepsilon_{i}F\left(k,n\right) - \omega\left(s_{l},\mu\right)n + q\left(s_{l},\mu\right)b' - \frac{\theta_{k}}{\left[k' - (1-\delta)k\right]} - b$$

#### decision rules

#### Firms without borrowing constraints

- We introduce a second type of firm without borrowing constraints.
- Optimally choose the capital policies of unconstrained firms.
- Indifferent to financial savings, we assign them debt policies

$$b' = lpha_e \left( k' 
ight)^2$$
 .

• The fraction of firms without borrowing constraints is  $\omega_e$ .

• Second type of firms increases the correlation between size and leverage from -0.22.

#### Real Shocks

- Changes in the distribution of production drive differences between measured aggregate total factor productivity and its exogenous component.
- These differences arise from credit shocks.
- We measure a log-normal technology shocks process (1954-2012)

$$\log z' = 
ho_z \log z + \eta_z'$$
 with  $\eta_z \sim N\left(0, \sigma_{\eta_z}^2
ight)$  ,

where  $ho_z=0.9092$  and  $\sigma_{\eta_z}=0.0145.$ 

We use the Rouwenhorst algorithm to create 3-state Markov Chain.

# Business cycles with real and financial frictions

#### full economy

| x =                 | Y     | С     | 1     | N     | K     | r     |
|---------------------|-------|-------|-------|-------|-------|-------|
| mean(x)             | 0.578 | 0.485 | 0.094 | 0.333 | 1.323 | 0.042 |
| $\sigma_x/\sigma_Y$ | 2.089 | 0.512 | 4.326 | 0.639 | 0.542 | 0.455 |
| corr(x, Y)          | 1.000 | 0.833 | 0.931 | 0.897 | 0.105 | 0.670 |

#### eliminating credit shocks

| <i>x</i> =          | Y       | С     | 1     | N     | K     | r     |
|---------------------|---------|-------|-------|-------|-------|-------|
| mean(x)             | 0.583   | 0.488 | 0.096 | 0.334 | 1.354 | 0.042 |
| $\sigma_x/\sigma_Y$ | (1.997) | 0.503 | 3.859 | 0.562 | 0.485 | 0.453 |
| corr(x, Y)          | 1.000   | 0.931 | 0.967 | 0.945 | 0.074 | 0.671 |

- Business cycles are relatively unaffected by credit shocks.
- The model economy with real and financial frictions looks like a equilibrium business cycle model without heterogeneity.

steady state