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Abstract

Using a long-panel data set of Japanese firms that contains firm-level sales forecasts,

we provide evidence on firm-level uncertainty and imperfect information over their life

cycles. We find that firms make non-negligible and positively auto-correlated forecast

errors. However, they make more precise forecasts and less auto-correlated forecast

errors when they become more experienced. We then build a model of heterogeneous

firms with endogenous entry and exit where firms gradually learn about their demand

by using a noisy signal. We present our novel approach to cleanly isolate the learning

mechanism from other mechanisms by using expectations data over time. We combine

the model with our data to perform a non-parametric decomposition of forecast errors

and find that learning accounts for between 20% to 40% of the overall decline in forecast

errors over the life cycle. Our model shows that, within the context of our cross-regional

data, productivity gains from removing information frictions ranges from 3% to 12%.

We find a prominent role of firm entry and exit in generating high productivity gains.
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1 Introduction

A growing literature has highlighted the importance of uncertainty and imperfect information

in driving firm dynamics and aggregate productivity.1 In fact, firms face uncertainty and

imperfect information when making almost all decisions in a dynamic environment, including

investment, hiring, and market entry.2 A key part of these decisions is to form expectations of

future outcomes, such as sales and profits. However, as we seldom observe firms’ expectations

over their life cycles directly, how firms respond to and resolve uncertainty and imperfect

information over time remains unknown. This makes it difficult to quantify the degree of

informational imperfections and to evaluate how much they matter for aggregate outcomes,

such as aggregate productivity.

In this paper, we make empirical progress by using panel data with quantitative measures

of sales expectations at the firm level. Unlike other data sets featuring old and large firms,

ours is designed to include young firms since their inception, allowing us to track how firms

resolve uncertainty and form expectations over their life cycle.3 Our main finding is that the

precision of sales forecasts increases over a firm’s life cycle. Specifically, we present evidence

that the variance of forecast errors declines with firms’ experience of operation. Moreover,

although each firm’s forecast errors are positively autocorrelated, the autocorrelation of

forecast errors declines with firms’ experience, a new fact that has not been unraveled by

existing studies. This suggests that firms accumulate experience and make more informed

decisions over time, the way of thinking in the theoretical literature of learning.4

To investigate its aggregate implications, we build a model of heterogeneous firms based

on Jovanovic (1982) and augment the model with two key modifications: (1) firms grad-

ually learn about their demand using payoff-irrelevant signals and (2) firms are subject to

idiosyncratic productivity shocks whose volatility varies over the life cycle. As will be shown

later, both learning and the age-dependent volatility channels contribute to the age-declining

variance of forecast errors, while only learning can drive the age-declining autocorrelation of

forecast errors. We thus can use the age profile of autocorrelation of forecast errors observed

in data to pin down parameters that govern learning in the model cleanly. This way, we

1See, for example, Bloom (2009) and Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018),
for seminal works.

2It is commonly understood that uncertainty matters for individual-level decision-making, such as invest-
ment (Guiso and Parigi, 1999), hiring (Bertola and Caballero, 1994), market entry (Dixit, 1989), and trade
Handley (2014).

3The Ifo business climate survey used in Bachmann, Elstner, and Sims (2013) and Enders, Hünnekes, and
Müller (2019) covers a wide range of firms over a long time; however, the major components are qualitative
firm-level expectations, with only a smaller set of supplementary quantitative questions available (Bachmann
and Elstner, 2015).

4See, for example, Jovanovic (1982), among others.
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can further distinguish the effect of learning from other confounding mechanisms on the ob-

served age-declining variance of forecast errors. This decomposition is demonstrated within

our data to uncover cross-region/country differences in the degree of imperfect information

and the potential gains from eliminating it. Our quantitative exercise reveals that (1) the

contribution of learning to the change in the variance of forecast errors over the firm’s life

cycle ranges between 20% to 40% and (2) eliminating imperfect information can lead to

productivity gains among firms ranging from 3% to 12%, and we find that entries and exits

of firms (i.e., the extensive margin) play a prominent role in generating large gains.

The data set we use is a parent firm-affiliated firm-matched 20-year panel data set

on Japanese multinational firms—taken from annual business surveys conducted by the

Japanese government. Our data set has three distinctive features: (1) it contains both

quantitative expectations and realized outcomes for each firm, which allows us to calculate

forecast errors at the firm level; (2) its panel structure and the inclusion of many young

firms enable the analysis of within-firm variation of forecast errors over their life cycle; and

(3) it is a confidential, mandatory survey enforced by the government, which leads to high

response rates (70% on average) and high quality.

Exploring our data set, we show the following features of forecast errors made by an

individual firm regarding its sales. First, firms’s forecast errors are close to zero on average,

and firm-year-level components explain most of the variations in forecast errors (compared

with aggregate components such as country-year and industry-year fixed effects). Second,

firms make more precise forecasts as they operate longer. Moreover, this result survives even

when we control for firm size and measures of market/product diversification at the firm

level, suggesting that accumulation and diversification of customer and product portfolios

alone cannot explain this fact. Third, past forecast errors are positively correlated with

current and future forecast errors, which is similar to Coibion and Gorodnichenko (2012)’s

finding regarding households’ and professional forecasters’ forecast errors. Importantly, we

also show that this positive autocorrelation declines over the life cycle of firms. Additionally,

we find that firms in countries with better management practices and in countries with

smaller time differences from Japan make less serially correlated forecast errors. These

stylized facts suggest that firms become better informed as they accumulate more experience.

In addition, low-quality management and inefficient within-firm communications could be

drivers of information frictions.

To build a model that can reproduce the aforementioned facts about forecast errors as

well as other salient empirical regularities regarding firm dynamics, we take a model of

heterogeneous firms with life cycles based on Jovanovic (1982) and Arkolakis, Papageorgiou,

and Timoshenko (2018). Firms face a downward sloping demand curve in a setting where
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the firm-specific demand shifter is heterogeneous across firms and unknown to them. The

firm-specific demand shifter is constant over the life cycle of firms and they will gradually

learn about it.

Two features in our model are important for us to be able to distinguish the effect of

learning from other confounding factors on the observed age-declining variance of forecast

errors. First, firms in our model face information constraints. We assume that firms learn

about their demand from a noisy signal, which is purely informational and does not affect

firms’ per-period profits (i.e., payoff-irrelevant). We show that this information structure

allows us to reproduce both the age-declining variance and the age-declining autocorrelation

of forecast errors, as compared to other models like Jovanovic (1982), where the variance of

forecast errors declines but forecast errors are serially uncorrelated.5 Second, we introduce

idiosyncratic shocks to firm-level productivity and assume that its volatility decreases as

firms become older, following Atkeson and Kehoe (2005). Therefore, not only learning but

also the age-declining volatility can contribute to the age-declining variance of forecast errors

in the model, reflecting factors other than learning in much the same way as reality, where

there is a host of other reasons that explain why the precision of firms’ sales forecasts, such as

accumulation and diversification of customer and product portfolios. Importantly, though,

the learning mechanism generates the age-declining autocorrelation of forecast errors, while

the age-declining volatility mechanism does not. With two moments in hand—variance

and covariance of forecast errors—we can decompose the observed forecast errors into the

learning effect and other effects. This approach using our model and data reveals how much

learning contributes the declining variance of forecast errors. Our decomposition exercise

shows that learning components are small in general, explaining about 10 to 20% of the

variance of the forecast errors. However, we show that the contribution of learning to the

change in the variance of forecast errors over the firm’s life cycle is large, ranging between

20 to 40%. To the best of our knowledge, our analysis is the first to isolate the evolution of

firms’ beliefs over their life cycle directly from panel data on firm expectations and succeeds

in reproducing the age-declining characteristics of firm-level forecast errors.

In the final part of the paper, we demonstrate our approach that incorporates both the

learning and other channels by calibrating our model to infer the learning parameters and

other key parameters governing firm dynamics. Our counterfactual experiment of eliminating

imperfect information reveals not only a substantial gain in overall productivity, but also

the role of firm entry and exit in driving it. In a world with extensive margin choices,

5The age-declining autocorrelation of forecast errors implies a deviation from full-information rational ex-
pectations, but it can reflect either deviations from full-information or departures from rational expectations.
We account for the age-declining autocorrelation of forecast errors by a model of information constraints
under rational expectations in the spirit of Coibion and Gorodnichenko (2012, 2015).
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eliminating imperfect information leads to not only more informed static decisions (i.e.,

employment), but also more informed dynamic decisions on entry and exiting. When we

allow endogenous entry and exit under imperfect information, providing better information

improves average firm-specific demand in the economy substantially. This selection channel

leads to larger productivity gains in our model compared with the model without endogenous

entry and exit, despite that the number of active firms (varieties) drops after informational

imperfection is eliminated. For instance, productivity gains are 3.49% when we remove

imperfect information in the model without endogenous entry and exit. However, if we allow

endogenous entry and exit productivity gains are 6.35%. We also confirm this result when

we implement cross-regional analysis, where we calibrate our model to match data moments

for eight regions/countries in the world. We show that the degree of imperfect information

and the associated aggregate implications vary across regions/countries, broadly consistent

with the view that low-quality management and inefficient within-firm communications can

lead to more severe information frictions and therefore productivity losses.6

Related literature: While economists have long speculated on how agents form expec-

tations, it is the lack of direct expectations data that has made the treatment of agents’

expectations an assumption-based approach. A growing literature breaks with this tradition

by collecting and analyzing direct expectations data as in Bloom, Davis, Foster, Lucking,

Ohlmacher, and Saporta-Eksten (2020) and Altig, Barrero, Bloom, Davis, Meyer, and Parker

(2020), among others.7 Notably, the seminal works by Coibion and Gorodnichenko (2012)

and Coibion and Gorodnichenko (2015) have demonstrated how to best model and calibrate

a theoretical framework and thus highlighted the usefulness of such a direct-measure-oriented

approach.8 One feature of our paper is to study firms’ expectations of micro objects such as

their own sales, instead of macro objects like the GDP growth rate and the inflation rate.

In this regard, our approach is in line with that of Enders et al. (2022) and Born, Enders,

Müller, and Niemann (2022), who investigate production and price adjustment by firms and

how they are causally influenced by firm-level expectations. Our focus in the paper is firms’

entry and exit decisions, providing insights into young firms’ post-entry dynamics as em-

6The caveat here is that our data only contain Japanese firms in various regions/countries, and Japanese
firms in one region/country may not be representative for all firms in that region/country. Therefore, the
calibrated parameters and the implied productivity gains across regions should be taken with caution.

7Other papers that study micro-level expectations include Gennaioli, Ma, and Shleifer (2016) for U.S.
firms, Bachmann and Elstner (2015), Bachmann, Elstner, and Hristov (2017), Triebs and Tumlinson (2013),
and Enders, Hünnekes, and Müller (2022) for German firms, Boneva, Cloyne, Weale, and Wieladek (2020)
for firms in the United Kingdom, Tanaka, Bloom, David, and Koga (2019) for Japanese firms, and Coibion,
Gorodnichenko, and Ropele (2020) for Italian firms.

8Recent papers that have studied how agents form expectations and respond to shocks include Coibion,
Gorodnichenko, and Kumar (2018), Baker, McElroy, and Sheng (2020), and Enders et al. (2022).
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phasized by, for example, Sedláček and Sterk (2017) and Foster, Haltiwanger, and Syverson

(2016).

Our paper contributes to the recent literature on firm-level uncertainty by showing how

it evolves over the life cycle of firms. While it is extensively documented that firm-level

uncertainty varies over time and across firms, within-firm variation of uncertainty over the life

cycle has received less attention. For example, Bloom et al. (2018) and Kehrig (2015) show

the cross-sectional dispersion of firm-level output and productivity fluctuates coutercyclically,

while Vavra (2014) and Berger and Vavra (2019) show that the dispersion of price changes

fluctuates coutercyclically. Moreover, Bachmann and Bayer (2014) show that the cross-

sectional dispersion of firm-level investment rates fluctuates procyclically. We focus on how

firm-level uncertainty fluctuates within firms and share the spirit with Baley and Blanco

(2019) and Baley, Figueiredo, and Ulbricht (2022) who study how uncertainty fluctuates or

creates a cycle within firms, in the context of price adjustment and worker-firm match quality,

respectively. Ilut, Valchev, and Vincent (2020) also study a life-cycle profile of uncertainty

within firms in a model where new firms accumulate information signals over the life cycle.

In the business cycle context, the role of information accumulation at the firm level has been

studied by Ilut and Saijo (2021), who also use forecast data to validate the structural model.

Finally, we identify and quantify misallocation due to imperfect information along the

life cycle of firms. Our focus on the life cycle of firms is reminiscent of Hsieh and Klenow

(2014), and our quantitative exercise is related to David, Hopenhayn, and Venkateswaran

(2016), who also substantiate the role of imperfect information in determining allocative

efficiency. What distinguishes our paper from theirs is that we show that productivity losses

through extensive margin dynamics—firms’ entries and exits—are substantial. Regarding

the importance of the extensive margin, our paper complements the results from Midrigan

and Xu (2014) and Buera, Kaboski, and Shin (2011), among other papers on misallocation,

although they focus on financial frictions.9

2 Empirical Facts

In this section, we construct our panel of Japanese firms operating in foreign markets to

document the properties of the forecast errors and their relationship with firms’ experience.

First, the forecast errors made by firms become smaller as they become more experienced.

Second, the forecast errors are positively autocorrelated, but the serial correlation declines

as they become more experienced. In addition, firms in countries with better management

9Related literature includes Khan and Thomas (2013) and Buera and Moll (2015) who studied the role
of financial frictions in generating capital misallocation and its aggregate implications.
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and/or in countries with small time differences from Japan show smaller serial correlation of

forecast errors. These facts indicate that firms become better informed as they accumulate

more experience, and management and within-firm communication could be one driver of

information frictions.

2.1 Data and the Reliability of Sales Forecasts

Our main data source is the Basic Survey on Overseas Business Activities (“foreign activities

survey” hereafter) conducted by the Ministry of Economy, Trade and Industry (METI).

The survey contains information on overseas affiliated firms of Japanese parent companies,

including the affiliated firms’ location, industry, sales, and employment. The survey covers

two types of overseas businesses: (1) direct (first-tier) affiliated firms with more than 10% of

the equity share capital owned by Japanese parent companies, and (2) second-tier affiliated

firms with more than 50% of the equity share capital owned by Japanese parent companies.

Dropping tax haven countries documented in Gravelle (2009), our baseline regression sample

contains on average 1781 parent companies and 6922 affiliated firms in a typical year from

1995 to 2013. Our sample covers Japanese firms operating in 96 countries and 29 industries,

including both manufacturing and services. In Online Appendix Section 1.1, we report

descriptive statistics regarding sub-samples in different time periods and the distribution of

firms across regions and industries in a typical year. The unit of analysis in our empirical

investigation is the affiliated firm by year. We slightly change the terminology: We refer to

the affiliated firms as “firms” and to all the affiliated firms belonging to the same parent

company as a “business group”.

The unique feature of the foreign activities survey is that each firm reports its sales

forecast for the next year when it fills out the survey of the current year. Because such

information is rarely available in firm-level data sets, we show that the sales forecasts are

reliable and contain useful information that affect actual firm decisions.

First, we show that firms do not use naive rules to make their sales forecasts. In Table 1,

we present the expected growth rates, calculated as the ratio of the firm’s forecast for year

t+ 1 to its realized sales in year t minus one. If firms simply use their realized sales in year

t to predict their sales next year, the expected growth rate will be zero. In Table 1, only

3.35% of the observations in our sample have a zero expected growth rate. The shares of

the other frequent cases are all extremely low. For the firms reporting zero expected growth

rates, it is difficult to tell whether they are making a naive forecast or a serious forecast

with the expectation that their sales growth will be close to zero. We therefore conduct

robustness checks of our main regressions in Online Appendix Tables OA.8 and OA.15 by
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dropping all observations with zero expected growth rates. Our empirical results remain

largely unchanged.

Table 1: The Most Frequent Values of Expected Growth Rates

Top 1-5 Top 6-10

Et(Rt+1)/Rt − 1 Freq. (%) Et(Rt+1)/Rt − 1 Freq. (%)

0.0000 3.35 0.0714 0.11
0.1111 0.22 0.3333 0.11
0.2500 0.20 0.0417 0.11
0.0526 0.17 0.0870 0.11
0.2000 0.14 1.0000 0.10

Notes: The table reports the most frequent values of expected growth rates among all firm-year observations.
Zero means that the firm expect the next year’s sales to be exactly the same as this year’s.

Second, we show that the sales forecasts have statistically significant and economically

strong impacts on future firm outcomes. Specifically, we regress the realized sales in year t+1

on the sales forecast made in year t and a set of fixed effects, and the results are reported in

Table 2. The first three columns of Table 2 show that the sales forecasts in year t positively

and significantly predict the realized sales in year t + 1. Importantly, the effect of the sales

forecast does not disappear when we include the realized sales in year t as a control variable

in Column 2. The coefficient of sales forecast is much larger than that of realized sales in the

previous year. Further including the realized sales in year t− 1 does not change this pattern

(Column 3). Columns 4–6 show that the sales forecasts also have strong predicative power

for future employment, even if we control for current and past employment. These findings

easily reject the hypothesis that firms fill out this survey question with random guesses. By

contrast, firms make these forecasts seriously, and the forecasts contain more information on

the firms’ future conditions than realized outcomes in the past.

Finally, the foreign activities survey is mandated by METI under the Statistics Law;

thus, the information in the survey cannot be applied to purposes beyond the scope of

the survey, such as tax collection. Firms have no incentive to misreport because of tax

purposes. Moreover, unlike earnings forecasts announced by public firms, the sales forecasts

reported to METI are confidential; thus, firms have no incentive to misreport strategically

and manage the expectations of the stock market investors. In total, the aforementioned

empirical patterns assure us that the sales forecasts contained in the foreign activities survey

are reliable and suitable for our empirical analysis.
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Table 2: Sales Forecasts Predict Firms’ Future Outcomes

Dep. Var. log total sales log(Ri,t+1) log employment log(Li,t+1)

(1) (2) (3) (4) (5) (6)

logEt(Ri,t+1) 0.673a 0.550a 0.584a 0.301a 0.132a 0.132a

(0.011) (0.012) (0.015) (0.013) (0.007) (0.007)
logRit 0.138a 0.080a

(0.008) (0.016)
logRi,t−1 0.063a

(0.007)
logLit 0.511a 0.505a

(0.011) (0.014)
logLi,t−1 0.057a

(0.007)
Country-Year FE Y Y Y Y Y Y
Industry-Year FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y

N 128937 127277 106785 127485 126534 106819
# of B-groups (cluster) 4951 4931 3859 4938 4924 3837
Within R-squared 0.477 0.484 0.493 0.163 0.384 0.392
R-squared 0.961 0.964 0.967 0.958 0.970 0.972

Notes: The dependent variable is firm i’s log total sales or total employment in year t + 1. We use R to
denote sales and L to denote employment. Et(Ri,t+1) refers to the firm’s expectation in year t for its sales
in year t+ 1. Standard errors are clustered at the business group level. Significance levels: a: 0.01, b: 0.05,
c: 0.10.

2.2 Forecast Errors

We now describe how firms’ forecast errors evolve over their life cycles. Our main measure

of forecast errors is the log point deviation of the realized sales from the sales forecast as

FElog
t,t+1 ≡ log (Rt+1/Et (Rt+1)) ,

where Rt+1 is the realized sales in period t+1 and Et (Rt+1) denotes a firm’s time t forecast of

its sales next period. A positive (negative) forecast error means that the firm under-predicts

(over-predicts) its sales. In Online Appendix Tables OA.5, OA.6, OA.13, OA.14, we show

that our key empirical results are robust to two alternative definitions of forecast errors:

the percentage deviation, and the residual of raw forecast errors after removing aggregate

components such as industry and country-year fixed effects.10 We also trim the top and

bottom one percent of observations of the forecast errors, to exclude outliers.

In Figure 1, we plot the distribution of our leading measure of forecast errors, FElog
t,t+1,

10The aggregate components explain approximately 11% of the variation in forecast errors. Recent work
has substantiated that firms may have heterogeneous exposure to aggregate shocks, which implies that the
“simple” residual forecast errors we construct may still be affected by the aggregate economic conditions.
Therefore, we construct alternative residual forecast errors by explicitly considering firms’ heterogeneous
exposure to aggregate shocks. For these alternative residual forecast errors, aggregate components explain
approximately 23% of the variation in forecast errors, but our main empirical findings are robust to these
alternative measures. Detailed discussions are in Section 1.3.6 of the online appendix.
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across all firms in all years. The forecast errors are centered around zero, and the distribution

appears to be symmetric. The shape of the density is similar to a normal distribution,

although the center and the tails have more mass than the fitted normal distribution (solid

line in the graph). The average forecast error across all firm-year observations is –0.024,

with a median of –0.005 and a standard deviation of 0.298. The absolute value of FElog
t,t+1 is

0.2, which implies that firms on average over forecast or under forecast their sales by 20%.

Figure 1: Distribution of the Forecast Errors
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Notes: Histogram of FElog
t,t+1 with the fitted normal density (solid line).

Fact 1: Precision of Forecasts Increases as Firms Become More

Experienced

Figure 2 presents the average absolute value of forecast errors by age cohorts, where age is

top-coded at ten. The precision of sales forecasts increases as the firm ages. Specifically,

as firms age from one to ten years, the absolute forecast errors decline from 36% to 18%

on average. Moreover, the decline occurs mainly in the first five years after entry. For

concreteness, we also present these statistics for a subsample in the manufacturing sector.

The patterns are similar.

We further confirm these patterns formally by an OLS regression of firm i’s absolute

forecast error in year t:

|FElog
it,t+1| = δn + βXit + δct + δst + εit, (1)

where δn is a vector of age dummies, δct represents the country-year fixed effects, and δst

represents the industry-year fixed effects. Time-varying controls such as firm size are denoted
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by Xit. We use age one as the base category; therefore, the age fixed effects represent the

difference in the absolute forecast errors between age n and age one. To further control for

heterogeneity across firms, we also run regressions with firm fixed effects δi.

Figure 2: |FElog| Declines with Firm Age
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Note: Average absolute value of FElog by age cohorts.

Column 1 in Table 3 shows the baseline specification with industry and country-year

fixed effects. As firms become older, the absolute forecast errors decline. On average, firms

that are at least ten years old have absolute forecast errors 17 log points lower. In Columns

2 and 3, we control for the size of the firms and their parent companies in Japan (measured

by log employment). Although larger firms tend to have smaller absolute forecast errors, the

age effects survive.11

One possible explanation of the age effects is that firms gradually improve their man-

agement quality or capability such that they can obtain a more diversified portfolio of des-

tination markets and products. We show that the age effects are not totally driven by such

diversification. To examine the importance of market diversification, we control for the con-

centration of firm sales across markets, measured by the Herfindahl–Hirschman Index (HHI)

of the shares of firm sales in six markets (the finest classification available in the survey): the

host country (local market), Japan, Asia, North America, Europe, and the rest of the world.

Column 4 shows that a higher value of market-level concentration increases the absolute

forecast errors, but controlling for it has a limited impact on the age effects. Unfortunately,

our main data source does not provide a breakdown of firm sales by products. To examine

11Tanaka et al. (2019) report that older firms make more precise forecasts than younger firms do, on the
basis of cross-section results. By contrast, our finding is based on within-firm variation with the firm fixed
effects, thereby pointing to the life cycle pattern of forecast errors.
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the importance of product diversification, we focus on the subset of firms in China which we

managed to match with the Chinese customs data between 2000 and 2009. For the matched

observations, we calculate a product sales HHI of using the customs’ records on firm exports

at the HS 6-digit product level. Column 5 shows that a higher value of product concentra-

tion also has a positive impact on absolute forecast errors, but it is not significant because

of the small sample size. The age effects, however, are robust to controlling for the product

concentration.12

To evaluate the robustness of our results, we restrict our sample to (1) surviving entrants

and (2) firms in manufacturing. Column 6 reports the result for a subsample of firms that

have survived and continuously appeared in the data from age one to seven, which shows

that our results are not driven by endogenous exits and nonreporting. Column 7 focuses on

the manufacturing subsample, and the results are similar. In the Online Appendix 1.3, we

further show that the age effects (1) are robust to various alternative measures of forecast

errors, including those that explicitly take firms’ heterogeneous exposure to aggregate shocks

into account, and (2) are not driven by the fact that firms enter in different months of a

fiscal year and that “age-one” firms actually have fewer than 12 months of experience (the

so-called “partial-year effects”), and (3) are not due to age-dependent biases in the level of

forecast errors.13 For the last robustness check, we design a two-step procedure to address

age-dependent biases in forecast errors. In particular, we run a first-stage regression on the

level of forecast errors, and project the squared residuals from the first stage on the same set

of independent variables in the second stage. These regressions show that the conditional

variance of forecast errors declines significantly with firm age. Interested readers can refer

to Section 1.3.2 of the online appendix.

Fact 2: Forecast Errors are Positively Autocorrelated but Less So

as Firms Become More Experienced

A growing literature has highlighted the serial correlation of forecast errors in various con-

texts. For example, Ryngaert (2017) and Coibion and Gorodnichenko (2012) demonstrated

that professional forecasters’ forecast errors of future inflation rates are autocorrelated, in-

dicating their imperfect information on macroeconomic conditions. Instead of using ex-

pectations data on macroeconomic outcomes, we utilize data on the sales expectations of

12We provide details on the construction of these measures, the matching between China customs data
and our main data source, and additional robustness checks regarding product and market diversification in
the Online Appendix 1.3.4.

13Age-dependent biases in the level of forecast errors occur, for example, when young firms over-predict
future sales as they are too optimistic. This can cause biases of the age effects on the absolute forecast
errors.
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Table 3: Age Effects on the Absolute Forecast Errors

Sample: All Firms China Survivors Manufacturing

Dep.Var: |FElog
t,t+1| (1) (2) (3) (4) (5) (6) (7)

1(Aget = 2) -0.066a -0.059a -0.063a -0.049a -0.048 -0.068a -0.072a

(0.007) (0.007) (0.008) (0.009) (0.031) (0.010) (0.011)
1(Aget = 3) -0.102a -0.089a -0.088a -0.067a -0.073b -0.093a -0.104a

(0.007) (0.007) (0.008) (0.008) (0.030) (0.010) (0.011)
1(Aget = 4) -0.128a -0.113a -0.110a -0.085a -0.077a -0.108a -0.127a

(0.007) (0.007) (0.008) (0.009) (0.030) (0.011) (0.011)
1(Aget = 5) -0.142a -0.125a -0.116a -0.094a -0.089a -0.121a -0.128a

(0.007) (0.007) (0.008) (0.009) (0.030) (0.012) (0.011)
1(Aget = 6) -0.142a -0.124a -0.114a -0.092a -0.074b -0.120a -0.131a

(0.007) (0.007) (0.008) (0.009) (0.032) (0.013) (0.011)
1(Aget = 7) -0.152a -0.131a -0.120a -0.100a -0.075b -0.134a -0.138a

(0.007) (0.007) (0.008) (0.009) (0.032) (0.014) (0.011)
1(Aget = 8) -0.156a -0.133a -0.121a -0.100a -0.085b -0.125a -0.140a

(0.007) (0.007) (0.009) (0.009) (0.033) (0.016) (0.012)
1(Aget = 9) -0.160a -0.135a -0.122a -0.104a -0.086b -0.126a -0.143a

(0.007) (0.007) (0.008) (0.009) (0.034) (0.017) (0.012)
1(Aget ≥ 10) -0.172a -0.137a -0.121a -0.103a -0.079b -0.129a -0.137a

(0.007) (0.007) (0.009) (0.009) (0.037) (0.019) (0.012)
log(Emp)t -0.021a -0.024a -0.023a -0.030a -0.035a -0.025a

(0.001) (0.002) (0.002) (0.011) (0.005) (0.002)
log(Parent Emp)t 0.001 0.001 -0.001 0.001 0.010 0.001

(0.001) (0.003) (0.003) (0.010) (0.007) (0.003)
HHI Market Sales at t 0.015a

(0.005)
HHI HS6 Product Exports at t 0.006

(0.014)
Industry-year FE Y Y Y Y Y Y Y
Country-year FE Y Y Y Y Y Y Y
Firm FE Y Y Y Y Y

N 131230 128429 123111 104598 8177 21982 76823
R2 0.104 0.122 0.366 0.376 0.393 0.357 0.363

Notes: Standard errors are clustered at the business group level. Significance levels: c: 0.10, b: 0.05, a: 0.01.
The dependent variable is the absolute value of forecast errors in all regressions. Age refers to the age of the
firm when making the forecasts. Regressions in Columns 1–4 include all firms. Column 5 only includes firms
in China that can be matched to the Chinese customs data. Survivors (Column 6) refer to firms that have
continuously appeared in the sample from age one to seven. Column 7 focuses on firms in manufacturing.
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individual firms and show that their forecast errors are positively autocorrelated over time.

Importantly, we document that the serial correlation of forecast errors declines with the

firm’s age.

Table 4: Correlation of FElog
t,t+1 and FElog

t−1,t, Overall and by Age Group

Sample All ages Age 2-4 Age 5-7 Age ≥ 8

All industries 0.137 0.170 0.152 0.120
[96452] [10410] [13801] [72241]

Manufacturing 0.139 0.193 0.151 0.116
[60123] [5828] [8591] [45704]

Notes: FElog
t,t+1 is the log deviation of the realized sales in year t + 1 from the sales forecast made in year

t. Age is measured at the end of year t. Number of observations used for each correlation is shown in the
brackets below. All correlation coefficients are significant at the 1% level.

Table 4 presents the serial correlation of forecast errors, for the entire sample and different

age groups. Among all firm-year observations, we find that the correlation coefficient be-

tween FElog
t,t+1 and FElog

t−1,t is 0.137. This result suggests that firms tend to make systematic

errors in forecasting their sales. The remaining three columns present the serial correlation

for different age groups. When firms become more experienced, the positive correlation is

reduced, indicating that firms become more informed and make smaller systematic errors

when forecasting. Such patterns are robust when focusing on the manufacturing subsample.

We find similar patterns when using alternative definitions of forecast errors (see Online

Appendix Table OA.12). Importantly, our results are robust when using percentage forecast

errors, Rt+1−Et(Rt+1)
Et(Rt+1)

, and are not an artifact of the log transformation.

We next confirm this pattern by running the AR(1) type of regressions at the firm level.

This allows us to control for the time-varying firm characteristics and various sets of fixed

effects to rule out confounding factors. In particular, we run the following regression:

FElog
i,t+1,t+2 = β1FE

log
i,t,t+1 + β2FE

log
i,t,t+1 × Ageit + β3Xit + δst + δct + δg + uit, (2)

where Ageit denotes the firm’s age at time t and Xit denotes the firm’s other time-varying

characteristics such as employment at time t. In all regressions, we control for the industry-

year, country-year, and business group fixed effects, denoted by δst, δct and δg, respectively.

In some regressions, we replace the business group fixed effects by business group-firm age

fixed effects.

Table 5 shows the regression results. To capture the nonlinear effect of the firm’s age,

we use either age top-coded at ten or the log of age. According to the estimates in Column

1, the AR(1) coefficient starts at 0.098 at age one and each additional year of experience

reduces it by 0.006. When controlling for business group-firm age fixed effects instead of
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Table 5: AR(1) Regressions and the Effect of Age

Dep.Var: FElog
t+1,t+2 All firms Manufacturing

(1) (2) (3) (4) (5) (6) (7) (8)

FElog
t,t+1 0.104a 0.100a 0.131a 0.123a 0.114a 0.112a 0.137a 0.134a

(0.014) (0.013) (0.018) (0.017) (0.019) (0.019) (0.025) (0.025)
×max{Aget, 10} -0.006a -0.008a -0.008a -0.009a

(0.002) (0.002) (0.002) (0.003)
× log(Aget) -0.018a -0.023a -0.027a -0.031a

(0.006) (0.007) (0.009) (0.011)
log(Emp)t 0.003a 0.003a 0.002b 0.002b 0.002c 0.002c 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
log(Parent Emp)t -0.010b -0.010b -0.010b -0.010b -0.010c -0.010c -0.014b -0.014b

(0.004) (0.004) (0.005) (0.005) (0.006) (0.006) (0.007) (0.007)
Industry-year FE Y Y Y Y Y Y Y Y
Country-year FE Y Y Y Y Y Y Y Y
Business Group FE Y Y Y Y
Busi.Group-Age FE Y Y Y Y

N 93478 93478 84839 84839 58630 58630 52510 52510
R2 0.205 0.205 0.274 0.274 0.229 0.229 0.300 0.300

Notes: Standard errors are clustered at the business group level, c: 0.10, b: 0.05, a: 0.01.

business group fixed effects, the AR(1) coefficients as well as the impact of firm age are

higher. Results are similar when we focus on firms in the manufacturing sample (Columns

5–8).

Fact 3: Potential Drivers of Information Frictions

Our data offer a wide coverage of countries where Japanese firms operate. This subsection

explores how serial correlation of forecast errors are correlated with various characteristics

of each country, using similar specifications as in Table 5, to shed light on potential drivers

of underlying differences in informational imperfection across countries.

We focus on three country characteristics: (1) management; (2) time zone differences;

and, (3) real GDP per capita. As suggested by Bloom, Kawakubo, Meng, Mizen, Riley,

Senga, and Van Reenen (2021), better managed firms are able to make more accurate fore-

casts about their own sales growth. We therefore use country-level average management

scores that are used in Bloom, Lemos, Sadun, Scur, and Van Reenen (2014) as a measure

of the management quality in each country. Second, the literature has identified time zone

differences as barriers to communication within (multinational) firms (Gumpert (2018) and

Bahar (2020)), which possibly lead to severe information frictions. Finally, we examine real

GDP per capita at the beginning of our sample (1995), which is a proxy for the overall devel-

opment level of the countries. We interact the country characteristics with the (one-period)

lagged forecast error to see how they affect the AR(1) coefficient. These results are by no

means causal and the list of drivers we study here is not exhaustive. However, they still shed
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light on why information frictions at the firm level differ.

Table 6: AR(1) Coefficient and Country Characteristics

Dep.Var: FE
log
t+1,t+2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

FE
log
t,t+1 0.1264a 0.1121a 0.1077a 0.0701a 0.0643a 0.0606a 0.0837a 0.0705a 0.0670a

(0.0080) (0.0068) (0.0070) (0.0094) (0.0075) (0.0078) (0.0101) (0.0083) (0.0085)
× Management Score (WMS 2015) -0.0131c -0.0087 -0.0229a

(0.0070) (0.0071) (0.0081)

× Time Diff from Japan 0.0098 0.0142b 0.0116
(0.0066) (0.0066) (0.0073)

× log GDP p.c. 1995 -0.0112c -0.0077 -0.0178a

(0.0058) (0.0058) (0.0066)
Industry-year FE Y Y Y Y Y Y Y Y Y
Country-year FE Y Y Y Y Y Y Y Y Y
Business Group FE Y Y Y
Busi.Group-Age FE Y Y Y

N 62005 96100 96100 61200 95152 95152 53433 86271 86271

R2 0.130 0.135 0.135 0.207 0.201 0.201 0.283 0.270 0.270

Notes: Standard errors are clustered at the business group level. Significance levels: c: 0.1, b: 0.05, a:
0.01. Management score is from the World Management Survey up to 2015 . Management score, time zone
differences and log GDP per capita are all standardized to facilitate interpretation of the coefficients.

Table 6 reports the regression results. Country characteristics are all standardized to fa-

cilitate interpretation. In Columns 1–3, we control for industry-year and country-year fixed

effects, while we further control for business group or business group-firm age fixed effects

in the other columns. In general, we find that the management score and GDP per capita

are negatively associated with the AR(1) coefficient of forecast errors, while time zone differ-

ences affect the coefficient positively. In the most demanding specifications (Columns 7–9),

we see that a one standard deviation of management score and GDP per capita reduces the

AR(1) coefficient by 0.023 and 0.018, respectively. A one standard deviation of time zone

differences increases the coefficient by 0.012. If we view the AR(1) coefficient as a measure

for information frictions, these results are consistent with our hypotheses that better man-

agement, more similar time zones, and higher development levels are negatively associated

with the severity of firm-level information frictions.

In the context of our sample of multinational firms, the result regarding management

capabilities can be thought of as suggesting that better managed firms have superior practices

of monitoring, one important component of management practices defined in Bloom and

Van Reenen (2007), that help them collect and digest crucial information to make better

forecasts, leading to less correlated forecast errors. Time zone differences can also reflect

information barriers with respect to intrafirm communication between parents and affiliates.

More similar time zones with more overlapped working hours make communication easier and

thus reduce information frictions within the firm. Finally, the economic development level

of an economy affects the supply of good managers (see Hjort, Malmberg, and Schoellman

(2021)). Therefore, a higher level of GDP per capita can lead to better managers that work in
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multinational firms (and other firms) in the host country. As a result, those firms’ managers

make less correlated forecast errors.

As we have shown that the AR(1) coefficients are also affected by firm age, we examine the

robustness of the above results by introducing a horse race between country characteristics

and firm age in Online Appendix Table OA.16. We find that age still significantly reduces the

AR(1) coefficients, and the country characteristics have the expected effects as in Table 6.

We also run a horse race between time zone differences and GDP per capita, and find that the

former and the latter significantly increases and reduces the AR(1) coefficient, respectively.14

3 Model

We develop a dynamic industry equilibrium model with Jovanovic (1982)-type learning em-

bedded as in Arkolakis et al. (2018). We enrich the model by having two distict features.

Firstly, each firm updates ex post beliefs about its permanent demand observing a noisy

signal. Secondly, the variance of shocks to idiosyncratic productivity decline exogenously

over the life cycle. As will become clear below, this setup helps us match the aforementioned

stylized facts and provides a framework to quantify informational imperfections using our

data.

3.1 Setup

In our model, time is discrete with periods t = 1,2,..., and the representative consumer spends

income Yt on goods produced by monopolistically competitive firms. Consumer utility from

consuming qt(ω) units of different products ω can be expressed using the quantity of the

following CES aggregate:

Qt =

(∫
ω∈Ωt

e
θ(ω)
σ qt(ω)

σ−1
σ dω

) σ
σ−1

, (3)

where σ is the elasticity between different varieties, θ (ω) is the demand shifter for variety

ω, and Ωt denotes the set of varieties available at time t. We can express the demand for a

particular variety, ω, as:

qt(ω) = YtP
σ−1
t eθ(ω)pt(ω)−σ, (4)

14The correlation between the management score and GDP per capita in our sample is 0.94. We therefore
do not have enough variations to separately identify the impact of these two variables on the AR(1) coefficient.
In contrast, the correlation between time zone differences and GDP per capita is 0.60.
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where Pt is the price index of the industry:

Pt ≡
(∫

ω∈Ωt

eθ(ω)pt(ω)1−σdω

)1/(1−σ)

. (5)

The firm-specific demand, θ (ω), is unknown to the firm but it understands that θ (ω) is

drawn from a normal distribution N
(
θ̄, σ2

θ

)
. We assume that the firm cannot fully uncover its

permanent demand draw θ (ω) from sales observation, faced with constraints in collecting and

processing information. Instead, the firm receives a noisy signal about permanent demand

draw θ (ω) and needs to learn about it over the life cycle:

st (ω) = θ (ω) + εt(ω), (6)

where εt(ω) is an i.i.d. noise term and drawn from a normal distribution N (0, σ2
ε). The

noise term can reflect errors in managing and sharing financial data inside the firm, and

thus managers are unable precisely back out the implied demand draw θ (ω) from available

information like realized sales.15

As we will show below, our chosen information structure generates the aforementioned

age-declining serially correlated forecast errors about sales (Fact 2).16 The key is that εt(ω)

is payoff irrelevant, being purely informational and orthogonal to firms’ per-period profits.

If εt(ω) is a real term and payoff relevant as in Jovanovic (1982) and Arkolakis et al. (2018),

sales forecast errors are serially uncorrelated. In Online Appendix 2.3, we show that sales

forecast errors are serially uncorrelated if εt(ω) is a real term and payoff relevant as in

Jovanovic (1982) and Arkolakis et al. (2018) and there are no endogenous exits.17 In addition,

alternative information environments and shock processes, such as perfect information and

15It can also reflect the fact that management practices such as monitoring are far from being perfect
inside the firm (e.g., Bloom and Van Reenen (2007), Bloom and Van Reenen (2010a)). As a result, managers
are unable to measure employees’ efforts perfectly and thus cannot use realized sales to precisely back out
the implied demand draw θ (ω).

16Not only a constraint in collecting and processing information but also a lack of knowledge about under-
lying model structures can lead to serially correlated forecast errors. To make our quantitative decomposition
of forecast errors transparent, we incorporate only the former but not the latter. See Ryngaert (2017) for
the quantitative importance of each channel for inflation forecasts.

17Suppose, for example, that the firm-specific demand shifter consists of a permanent component and a
transitory one, both of which are payoff-relevant and not separately observable, as in Arkolakis et al. (2018).
Then, firm’s information set in period t includes all the realized demand shifter and forecasts made up to
period t (forecasts are functions of realized demand shifters). As a result, forecast errors for period t + 1
is independent of their lagged values, due to the nature of conditional expectations and the fact that the
lagged forecast errors are functions of previous demand shifters up to period t. See Online Appendix 2.3 for
further details. In our model, however, the realized demand shifter in our model θ (every period) is never in
firm’s information set in period t, as the firm cannot perfectly observe it. Inside the firm’s information set
in period t are the series of the noisy signals and the forecasts made in the past.
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learning about an time-varying, AR(1) process of the firm demand θt, imply zero forecasting

errors (see Online Appendix 2.1 and 2.4). On the other hand, endogenous exits are unlikely

to drive the results. We show that they generate negative correlated forecasting errors under

perfect information with AR(1) type of shocks (see Online Appendix 2.2).

Output is linear in labor with qt = ϕtlt and firms hire workers at the wage rate of w.

Firms’ labor productivities follow an AR(1) process, where the variance of the shock is age-

dependent. Replacing the time subscript with firm age n, we can write the productivity

process as

logϕn = µϕ + ρ logϕn−1 + νn, νn ∼ N(0, σ2
νn).

This setup allows for age-dependent volatility. When we parameterize the model, we follow

Atkeson and Kehoe (2005) and assume that σνn declines according to a quadratic function

up to an age cutoff. There are multiple reasons why the variance of forecast errors or sales

growth rates declines over firms’ life cycles, including learning, accumulation of customers,

and diversification of product portfolios. The age-dependent volatility captures mechanisms

other than learning in a “reduced-form” way. We incorporate this term into our model, as

we want to isolate the contribution of the learning mechanism (to the decline of the variance

of forecast errors) from contributions made by the other alternative mechanisms mentioned

above. In short, we acknowledge the possible existence of other alternative mechanisms in

our empirical setting and let the data tell us the contribution purely made by the learning

mechanism. As we will discuss in Section 4, information on autocovariance and variance

of the forecast errors helps us separately identify learning and age-dependent volatility, as

age-dependent productivity shocks do not affect the autocovariance of forecast errors.

The timing of the events in a given period t is as follows. At the beginning of each period,

the incumbents receive an exogenous exit shock with probability η randomly. Surviving

incumbents choose between staying in the market by paying a fixed cost f in units of labor

and exiting (permanently). Conditional on staying in the market, firms decide how many

workers to hire, lt, before the current labor productivity ϕt is realized. At the end of

the period, the productivity ϕt is realized and the firm chooses the price pt to sell all the

products produced, as we assume there is no storage technology and firms cannot accumulate

inventories. Finally, firms observe the new signals st and update beliefs.

In each period, there is a unit mass of potential entrants that decide whether to enter

the market. Each entrant makes a permanent demand draw θ from a normal distribution,

N
(
θ̄, σ2

θ

)
and an initial labor productivity ϕ0 from a log normal distribution, logN

(
0, σ2

ϕ0

)
.

Potential entrants have perfect information about ϕ0 and know the distribution of θ that

is consistent with the data generating process, N (0, σ2
θ). In other words, they know the

unbiased prior distribution of θ, but not the value of θ they draw. Potential entrants have
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to make a decision on whether to enter the market. Those with high labor productivity ϕ0

will enter and produce in this market.

3.2 Belief Updating

In this subsection, we discuss how a firm forms the ex post belief for its permanent demand.

At the beginning of a period, a firm that is n+1 (n ≥ 1) years old has observed noisy signals

of the permanent demand draw in the past n periods: s1, s2, . . . , sn. Because both the prior

and the noisy signals are normally distributed, Bayes’ rule implies that the posterior belief

about θ is normally distributed with mean µn and variance σ2
n:

µn =
σ2
ε

σ2
ε + nσ2

θ

θ̄ +
nσ2

θ

σ2
ε + nσ2

θ

s̄n, σ2
n =

σ2
εσ

2
θ

σ2
ε + nσ2

θ

, (7)

where the history of signals (s1, s2, . . . , sn) is summarized by age n and the average signal of

the permanent demand draw:

s̄n ≡
1

n

n∑
i=1

si for n ≥ 1; s̄0 ≡ θ̄.

For age-one firms (i.e., entrants), their belief for the mean and variance of θ is the same as

the prior belief:

µ0 = θ̄, σ2
0 = σ2

θ .

3.3 Static Optimization of Per-Period Profit

In this subsection, we study the firm’s static optimization problem. As we focus on firms’

behavior in the steady state (i.e., the stationary equilibrium) in what follows, we omit the

subscript t whenever possible, and use age subscript n when necessary. In each period, the

firm’s output decision is a static choice. Given the belief about θ and ϕn, an age-n firm hires

ln workers to maximize its expected per-period profit, E (πn|ϕn−1, s̄n−1, n). The realized

per-period profit is πn = pnqn−wln−wf , where qn = ϕnln and firms set price pn to clear the

market according to equation (4). Maximizing E (πt|ϕt−1, s̄n−1, n), the optimal employment

is

ln =

(
σ − 1

σ

)σ (
b (ϕn−1, s̄n−1, n− 1)

w

)σ
Y P σ−1, (8)
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where

b (ϕn−1, s̄n−1, n− 1) ≡ E
(
e
θ
σϕ

σ−1
σ

n |ϕn−1, s̄n−1, n
)

= exp

{
µn−1

σ
+
σ2
n−1

2σ2
+
σ − 1

σ
((1− ρ)µϕ + ρ logϕn−1) +

(σ − 1)2σ2
νn

2σ2

}
, (9)

and n is the firm’s age. The resulting price and expected per-period profit function are:

pn =
(
Y P σ−1eθ

) 1
σ q

1
σ
n =

σ

σ − 1
e
θ
σϕ−1/σ

n

w

b (ϕn−1, s̄n−1, n− 1)
; (10)

Eπn = (σ − 1)σ−1σ−σY P σ−1 b (ϕn−1, s̄n−1, n− 1)σ

wσ−1
− wf. (11)

3.4 Dynamic Optimization and Equilibrium Definition

In each period, the potential entrant chooses whether to enter the market and the incumbent

firm chooses whether to stay in the market or exit. For an incumbent firm that is n + 1

years old, its state variables include the labor productivity ϕn, the history of demand signals

summarized by s̄n, and its age n in the last period. The incumbent firm’s value function

(after the random death shock is realized) satisfies:

V (ϕn, s̄n, n) = max{0, Enπn+1 + β(1− η)EnV (ϕn+1, s̄n+1, n+ 1)}, n ≥ 1. (12)

If the firm chooses to exit permanently, it receives a value of zero. For a potential entrant,

its values function is:

V (ϕ0, s̄0, 0) = max{0, E0π1 + β(1− η)E0V (ϕ1, s̄1, 1)}, (13)

as its productivity already evolves once when the entrant chooses to stay in the market and

thus produce. In total, we have the value function that applies to both the potential entrant

and the incumbent firm:

V (ϕn, s̄n, n) = max{0, Enπn+1 + β(1− η)EnV (ϕn+1, s̄n+1, n+ 1)}, n ≥ 0. (14)

We denote the corresponding policy function as o(ϕn, s̄n, n), which can be either staying or

exiting. The definition of equilibrium is contained in the Appendix.
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4 Decomposing Forecast Errors

In this section, we show how our model matches Facts 1 and 2 presented in Section 2. As will

be clear below, learning contributes to both (1) the age-declining variance of forecast errors,

and (2) the age-declining covariance of forecast errors, while the age-dependent volatility

only generates the former. This insight from our model allows us to decompose the variance

of forecast errors into learning and age-dependent volatility components. We illustrate the

intuitions by using a special case in which there is no endogenous entry and exit of firms.

Proposition 1 When there is no endogenous entry and exit, the forecasts and forecast errors

of firm sales have the following properties.

1. The variance of forecast errors declines with age.

2. Forecast errors made in two consecutive periods by the same firm are positively corre-

lated. The positive covariance declines with age.

3. The difference between the variance of forecast errors (made at age n) and the auto-

covariance of forecast errors (made at age n− 1 and n) has a one-to-one relationship

with the (age-dependent) volatility of productivity shocks.

Proof. See Appendix 7.1.

Both life cycle learning and age-dependent volatility contribute to the age-declining vari-

ance of forecast errors. Thanks to learning, firms accumulate more experience and thus have

clearer information on their permanent demand when they become older, which makes the

variance of forecast errors smaller. In addition, as we assume the variance of productivity

shocks, σνn , declines with firm age, the variance of forecast errors also shrinks when the firm

becomes older.

The above proposition also rationalizes the finding of the serially correlated forecast errors

presented in Section 2.2, as firms adjust their posterior beliefs gradually. In other words,

firms incorporate new signals partially into their posterior beliefs. As a result, the firm is

more likely to under-predict (or over-predict) its next year’s sales, if it has underpredicted

(or overpredicted) its current year’s sales. This leads to the positive autocorrelations of

forecast errors.18 Moreover, as a more experienced firm makes smaller forecast errors, the

autocovariance of forecast errors declines with years of experience.

18However, this does not mean that firms make non-zero forecast errors on average, as positive and negative
errors are averaged out across a large number of firms.
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4.1 Nonparametric Decomposition

The above proposition illustrates how we can back out the learning parameters (σθ and σε)

and age-dependent volatility separately by using the panel data of forecast errors. To make

the intuitions salient, we assume away endogenous exits. Under this assumption, the forecast

errors of sales at age n is

FEn,n+1 ≡ log
Rn+1

EnRn+1

=
θ

σ
− logEn(e

θ
σ )︸ ︷︷ ︸

FEθn,n+1

+
σ − 1

σ
logϕn+1 − logEn(ϕ

σ−1
σ

n+1)︸ ︷︷ ︸
FEϕn,n+1

, (15)

where the first two terms, denoted by FEθ
n,n+1, represent the forecast errors that arise be-

cause of the firm’s imperfect information about θ. The third and fourth terms, denoted by

FEϕ
n,n+1, represent the forecast errors that come from the unpredictable innovation in the

firm’s AR(1) productivity process. As is shown in Appendix 7.1, the term FEϕ
n,n+1 is linear

in the innovation term νn+1, which is uncorrelated with FEϕ
n−1,n (linear in νn). By contrast,

the term FEθ
n,n+1 is serially correlated since firms never observe θ and gradually update their

belief about θ with noisy signals. The calculation shows that the covariance and variance of

FEn,n+1 are:

Cov(FEn−1,n, FEn,n+1) =
σ2
n

σ2
; V ar(FEn,n+1) =

σ2
n

σ2
+

(σ − 1)2σ2
νn

σ2
. (16)

We can perform a non-parametric decomposition of V ar(FEn,n+1) into the learning com-

ponent and the age-dependent volatility component, by using the two formulas together.

Specifically, the covariance of forecast errors is only related to learning, as age-dependent

volatility does not enter into the expressions. When we take the difference between the

variance and the autocovariance of forecast errors, the only term that is left is the (age-

dependent) variance of the firm’s productivity shocks (multiplied by a constant):

V ar(FEn,n+1)− Cov(FEn−1,n, FEn,n+1) =
(σ − 1)2σ2

νn

σ2
. (17)

Note that our decomposition is “non-parametric” in the sense that we do not impose any

structure on σνn .

Following this logic, we use Table 7 to implement the decomposition exercise. Columns

(1) and (2) of the table are variance and covariance of forecast errors at age n in the data,

while Column (5) is the difference between the two, capturing age-dependent volatility. In

terms of levels, the learning component (covariance terms) are in general small, explaining

about 10 to 20% of the variance of the forecast errors (Column 3, the ratio of Column 2
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to Column 1). However, they have a larger contribution to the change in the variance of

forecast errors over the firm’s life cycle, ranging between 20 to 40% (Column 4). This is

because the variance of shocks to labor productivity does not diminish to zero when firms

are sufficiently old, which levels up the overall variance of forecast errors and makes the ratios

in Column 3 small. Both learning and age-dependent volatility are important to account for

the life cycle dynamics of firms’ forecast errors.

Table 7: Non-parametric Decomposition of Learning and Age-Dependent Volatility Assum-
ing Away Selection

Age n (1) (2) (3) (4) (5)

V ar(FEn,n+1) Cov(FEn−1,n, FEn,n+1) % Level %∆ from n = 2
(σ−1)2σ2

νn+1

σ2

1 0.242
2 0.174 0.034 19.8 0.139
3 0.135 0.019 14.5 38.3 0.115
4 0.110 0.020 18.5 22.0 0.089
5 0.098 0.013 12.9 28.8 0.086
6 0.097 0.014 14.5 26.5 0.083
7 0.088 0.014 16.0 23.7 0.074
8 0.087 0.008 9.1 30.5 0.079
9 0.081 0.009 10.9 27.6 0.072
10 0.069 0.008 11.9 25.0 0.061
11 0.069 0.008 11.3 25.4 0.061

Notes: Columns (1) and (2) report the variance and covariance of log forecast errors of firms at different ages in our

data. Column (3) reports the ratio,
Cov(FEn−1,n,FEn,n+1)

V ar(FEn,n+1)
, in percentage terms. Column (4) reports the share con-

tributed by the reduction in Cov(FEn−1,n, FEn,n+1) in the overall reduction in V ar(FEn,n+1). Mathematically, it equals
Cov(FEn−1,n,FEn,n+1)−Cov(FE1,2,FE2,3)

V ar(FEn,n+1)−V ar(FE2,3)
. Column (5) reports the difference between Columns (1) and (2). According to the

equation (17), this term is driven by age-dependent volatility. Note that all these decomposition are under the assumption that
there is no endogenous entry and exit.

5 Quantitative Analysis

In this section, we quantitatively assess the aggregate implications of imperfect information.

We first describe the procedures used for calibrating our model and show the mapping from

the model elements to the empirical facts presented in Section 2. We show that our calibrated

model can capture the dynamics of firms’ forecast errors, as well as other features of the data.

Using similar procedures, we recalibrate some of the model parameters by different regions

in the world, and evaluate the gains from a reduction in the information friction in each

region.

5.1 Calibration

We first normalize a set of parameters not separately identified from others. Specifically,

aggregate demand shifter, Y , and the wage rate, w, are normalized to one. The mean of the
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logarithm of the permanent demand, θ̄, is normalized to zero. Next, we set the elasticity of

substitution between the varieties, σ, to four, a common value in the literature (see Bernard,

Eaton, Jensen, and Kortum, 2003). We set the discount factor, β, to 0.96, which implies

a real interest rate of 4% per annum. The exogenous death rate, η, is needed so that very

large firms will still exit as observed in the data. We set it to 0.03, matching the exit rate

of the largest 5% of firms above age ten. We impose an age threshold so that learning and

age-dependent volatility are no longer important for these firms. Only extremely negative

shocks to labor productivity and the exogenous death shock will induce exits (Table 8).

Table 8: Parameters Calibrated Without Solving the Model

Parameters Description Value Source

σ
Elasticity of substitution between different vari-
eties

4 Bernard et al. (2003)

β Discount factor 0.96 4% real interest rate
η Exogenous death rate 0.03 Exit rate of the largest 5% of firms above age ten

In our calibration, learning is parameterized by the two parameters, σθ and σε. Guided by

the decomposition exercise in section 4.1, two natural candidate moments are the covariance

of FEs for the youngest firms and the oldest firms. Loosely speaking, conditional on other

parameters, we calibrate σθ and σε so that the model can match the autocovariance of FEs

at ages of one and two, and the autocovariance of FEs above age ten.

Learning contributes the age-declining variance of FEs but only partially, as discussed

in section 4.1. We let the age-dependent volatility reproduce the rest of the age-declining

variance of FEs. We parameterize the age-dependent volatility using a quadratic function

following Atkeson and Kehoe (2005)

σνn =

κ0 + κ1

(
10−n

10

)2
if n < 10

κ0 if n ≥ 10.

Therefore, σνn starts from a value of κ0 + κ1 and drops to and stays at κ0 after age ten. We

calibrate the two parameters so that the model can match the variance of forecast errors

above age ten and the variance of forecast errors at age one.19

19When mapping the model to the data, we use a mix of “age one” and “age two” firms to mimic “age
one” firms in the data. In the model, “age one” firms have not received their first signal s1 and are making
their extensive margin and employment decisions based on their prior, while “age two” firms have received
one signal. In the data, “age one” firms are defined as those established in any month of the current fiscal
year. Therefore, firms that entered late in the fiscal year may have little information about θ and will make
their prediction like an “age one” firm in the model, while other firms that entered early in the year may
have received s1 and behave like an “age two” firm in the model. We assume that any entrant has an equal
chance to enter at the beginning or at the end of a fiscal year. When we match the variance and covariance
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We are left with the choice of the remaining two other parameters: the per-period fixed

cost, f , and the AR(1) coefficient of the labor productivity process, ρ. For the former, we

target the average exit rate of incumbent firms. For the latter, we first compute the “adjusted

labor productivity” as

log Ǎn = logRn −
σ − 1

σ
log ln =

θ

σ
+
σ − 1

σ
logϕn +

1

σ
log(Y ) +

σ − 1

σ
log(P ),

where θ is firm-specific but time-invariant and Y and P are aggregate variables that do not

vary across firms. The coefficient before log ln is important – with this adjustment, the term

related to expectation, b(ϕn−1, s̄n−1, n− 1), drops out from the labor productivity measure.

We then use the following data moment

V ar[log(Ǎn+1/Ǎn−1)]

V ar[log(Ǎn+1/Ǎn)]
− 1, n ≥ 10 (18)

to calibrate ρ.20 Note that without selection, this formula provides an unbiased estimate

for the persistence parameter in a stationary AR(1) process, even in small samples (Lo and

MacKinlay, 1988). In our modified setting, taking the one- and two-period differences in Ǎn

removes the permanent demand shock θ. In addition, focusing on old firms ensures that σνn

is constant and we can apply the same argument in Lo and MacKinlay (1988). Endogenous

exits break the one-to-one mapping between this moment and ρ. However, we find that

selection creates a very small bias and that this moment tightly pins down ρ.

Table 9: Parameters Calibrated by Solving the Model and Matching Moments

Parameters Value Description Moments Data Model

f 0.0093 fixed cost
average exit rate of incum-
bents

0.093 0.093

σθ 0.96 std of θ
Cov(FEt−1, FEt) at age
one

0.034 0.034

σε 1.36 std of ε
Cov(FEt−1, FEt) above
age ten

0.008 0.008

κ0 0.33 σνn = κ0 + κ1(1− n/10)2 Var(FE) above age ten 0.069 0.069
κ1 0.28 σνn = κ0 + κ1(1− n/10)2 Var(FE) above at age one 0.242 0.241

ρ 0.67 persistence in productivity V ar[log(Ǎn+1/Ǎn−1)]

V ar[log(Ǎn+1/Ǎn)]
− 1 0.664 0.666

In Table 9, we list the parameters and moments in an order such that loosely, the moment

provides the most information on the parameter in the same row. All moments are matched

of FEs of “age-one” firms in the data, the model counterpart is the same moments of a mix of “age one”
and “age two” firms. The shares of “age one” and “age two” firms in this mix are close to 50% each, with
the latter being slightly smaller due to the endogenous exit. We use the same strategy for other firm ages.

20Since P and Y do not vary across firms, they drop out from the variance. Moreover, θ also drops out
from the difference in the logarithm of “adjusted labor productivity”, as it is time-invariant.
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precisely. The calibrated σθ and σε are 0.96 and 1.36, respectively, implying a signal-to-noise

ratio of 0.50. We find the value of ρ to be 0.67, very close to the data counterpart of equation

(18).

5.2 Dynamics of Forecast Errors and Sales

In this section, we examine how our calibrated model performs regarding untargeted mo-

ments, focusing on moments of forecast errors and sales. In Figure 3, we plot the age profile

of the variance and covariance of forecast errors. In the calibration, we match these moments

for the youngest and oldest firms with two parameters related to learning and two parameters

related to age-dependent volatility. The variance and covariance of forecast errors at other

firm ages (between two and nine), though not directly targeted, track the data quite closely.

Therefore, the parameterization does not cost us much in terms of matching the dynamics

of forecast errors compared with the more flexible “non-parametric” decomposition in Table

7.

Figure 3: Moments of Forecast Errors, Model vs. Data
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Next, we examine how our model performs regarding the age-declining AR(1) coefficients

reported in Table 5. In particular, we simulate a 20-year panel of firms using the calibrated

model parameters. We choose the number of simulated firms such that the simulated regres-

sions have similar number of observations as our AR(1) regressions in Table 5. From this

simulated data, we can calculate untargeted coefficients obtained from firm-level regressions.

In Columns (1) and (2) of Table 10, we report coefficients of the AR(1) together with the

impact of firm age (capped at age 10) in the data, with or without business group fixed

effects. The model implied coefficients (Column 3) are consistent with the data: we see a
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positive autocorrelation overall, and a smaller coefficient when firms are older. Since we do

not target these regression coefficients in our calibration, the overall AR(1) coefficient is a

bit higher than that observed in the data, while the impact of age on the AR(1) coefficient

is slightly smaller. However, the point estimate of the age effect in the simulated panel is

within the 95% confidence interval of the estimates from the data reported in the first two

columns.

Table 10: AR(1) of Forecast Errors interacted with Age

Dep Var: FElog
t+1,t+2

data model

(1) (2) (3)

FElog
t,t+1 0.141a 0.102a 0.168a

(0.013) (0.014) (0.006)

FElog
t,t+1 ×Aget -0.005a -0.006a -0.003a

(0.002) (0.002) (0.001)
Year FE Y
Industry-Year FE Y Y
Country-year FE Y Y
Business Group FE Y
Age FE Y Y Y

N 96153 95196 94608
R2 0.138 0.204 0.031

Notes: Standard errors are clustered at parent-firm level for columns (1) and (2) and at the firm level for column (3). Significance
levels: c 0.10 b 0.05 a 0.01. Note that business group, country and industry fixed effects are not applicable to the simulated
panel of firms. In the simulated regression, we control for year and age fixed effects to best mimic columns (1) and (2).

In Figure 4, we examine the model’s performance in terms of moments related to firm

sales, which are not directly targeted in our calibration. Panel (a) plot the average log sales

of firms of different ages. There is growth in average firm sales over their life cycles both in

the model and in the data. However, the growth rate tends to decline as firms become older.

The main difference between the data and the model is that average firm size still grows after

age ten in the data but not too much in the model. The decline in the rate of firm growth is

a key feature of learning models, which has been used to estimate the learning parameters

in Arkolakis et al. (2018). Our model implies slower growth and a quicker diminish of the

growth (over the firm’s life cycle) than the data. This is expected, as we do not target these

moments in the calibration, and there are other mechanisms that explain firm growth (e.g.,

the accumulation of customer capital as in Foster et al. (2016)). Regarding second moments,

our model successfully generates the decline in the standard deviation of the sales growth

rates observed in the data, as reported in Panel (b) of the figure.
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Figure 4: Moments of Sales, Model vs. Data
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5.3 Aggregate Implications

In this subsection, we study the effect of information frictions on aggregate outcomes such as

allocative efficiency and productivity. We first set the parameter values as described above

and study comparative statistics of varying σε, the parameter that governs the noisiness of

the signals that firms receive. This highlights various channels that operate through intensive

and extensive margins, affecting allocative efficiency and productivity in the economy, and

we find that endogenous firm entry and exit (the extensive margin) play a quantitatively

important role in generating large productivity gains from eliminating informational frictions

from the economy. Finally, we demonstrate this in our cross-regional analysis where we apply

our calibration approach to infer the learning parameters as well as other key parameters

governing firm dynamics in each region. Our experiment confirms not only the degree of

information frictions, but also the extent to which entries and exits of firms matter for the

size of productivity gains from removing information frictions.

5.3.1 Comparative statistic: intensive and extensive margins

We first consider a change in the information environment by changing the value of σε with

other parameters held fixed at the values described above. Our baseline σε is 1.36, and we

vary it between 0.10 and 2.50, the highest value corresponding to the region with the highest

σε as we show in our by-region calibration in Section 5.3.3. We also consider a case where

information about θ is perfect in that entrants know the true value of θ.

Figure 5 plots the impact of information frictions on aggregate outcomes. We compare

our baseline model to a version of our model without endogenous entry and exit. In Figure
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5, the blue curves with dots summarize the comparative statistics with respect to σε in the

baseline model. The red curves with square markers indicate the same comparative statistics

with respect to σε in the model where we set the per-period fixed costs f to zero. In both

models, price index increases with σε (top left panel), while labor productivity decreases

with σε (top right panel), with the slope being steeper in the baseline model.

Table 11: Aggregate Outcomes under Different σε

Panel A: f = 0.0093 (benchmark) (1) (2) (3)

Statistics
High Info. Friction

σε = 2.50
Baseline Info. Friction

σε = 1.36 Perfect Info.

Mass of Active Firms 11.224 10.359 9.046
Incumbents Average θ 0.591 0.764 1.046
Incumbents Average θ + (σ − 1) logϕ 0.187 0.231 0.315
Q/L 3.482 3.623 3.853
∆% Q/L -3.88 6.36

Panel B: f = 0 (1) (2) (3)

Statistics
High Info. Friction

σε = 2.50
Baseline Info. Friction

σε = 1.36 Perfect Info.

Mass of Active Firms 32.333 32.333 32.333
Incumbents Average θ 0 0 0
Incumbents Average θ + (σ − 1) logϕ 0 0 0
Q/L 4.528 4.624 4.794
∆% Q/L -2.08 3.66

Notes: This table reports equilbrium outcomes under a high level of information frictions (σε = 2.50), baseline model (σε = 1.36)
and perfect information, with different values of fixed costs (baseline value, 0.0093, and alternative value, 0). As is explained
in footnote 21, the term θ + (σ − 1) logϕ can be interpreted as “firm capability”, which uniquely determines a firm’s size in a
perfect information static model.

These productivity losses from informational imperfection stem from the effects that

operate through both intensive and extensive margins. For the intensive margin, it is shown

by that the correlation between firm capability (log φ ≡ (σ−1) logϕ+θ) and production scale

(log b) decreases with σε (middle left panel).21 This is because more severe informational

imperfection tends to make firms with low demand θ produce too much, and vice versa for

firms with high demand. Imprecise knowledge about demand θ makes output choice far

from the optimal level at the intensive margin, which can also be seen in that the correlation

between the true demand θ and the average of past noisy signals s̄ decreases with σε (middle

right panel).

For the extensive margin, it can be seen that the average value of demand shifters across

firms decreases with σε (bottom left panel). More severe informational imperfection tends

to make firms with low demand draws but high value for the noise term enter and stay

21 Firm capability term log φ is a combination of firm labor productivity ϕ and its permanent demand
shifter θ. Scaling logϕ by the coefficient σ − 1 ensures that this term solely determines firm-level output
in a perfect information static model. In our dynamic imperfect information model, b is the only firm-level
variable that determines expected profit (see equations (9) and (11)). In a perfect information static model,
log b is linear in log φ thus the correlation is one.
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and to make firms with high demand draws but low value for the noise term exit, a similar

mechanism studied in the context of selection into exporting in Sager and Timoshenko (2021).

A less stringent selection under more severe informational imperfection can also be seen from

the result that the mass of active firms increases with σε (bottom right panel).22 These effects

from selection do not show up without endogenous entry and exit of firms, as depicted by

the red curves with square markers in the bottom panels. In this alternative model, all

potential entrants (other than those that exit exogenously) are active in production. Thus,

the information friction affects the price index and labor productivity only through the

intensive margin.

Table 11 shows the quantitative implications and highlight the role of selection. Labor

productivity increases by 6.35 % in our baseline model with endogenous entry and exit, while

it increases by 3.66 % in the alternative model where the extensive margin does not play

a role. Our comparative statistics show not only a substantial gain in overall productivity

with eliminating informational frictions, but also the role of firm entry and exit in driving

it.

5.3.2 Heterogeneous effects across different age groups of firms

One feature of our model is the gradual resolution of uncertainty over the life cycle of firms.

Entrants and young firms face more severe informational imperfection and learn their true

values of demand shifter over time, while deciding in each period whether to stay or exit

from the market. We proceed with the analysis to see how firms in different age groups are

affected differently by the elimination of the information friction and how much each age

group’s productivity change contributes to the overall productivity gains in the economy.

First, we define the average productivity of age-n (n ≥ 1) firms as

An ≡
Qn

Lprodn

=

(∫
ω∈Ωn

e
θ(ω)
σ qn(ω)

σ−1
σ dω

) σ
σ−1

Lprodn

, (19)

where Lprodn is the number of workers used in production of all age-n firms, excluding workers

used to pay for the fixed cost. Ωn is the set of active age-n firms and qn(ω) is the output

of the firm that produces variety ω. Note that entrants are age-one firms, while incumbents

are older than one. According to the definition of average productivity of firms of all ages,

22Note that the mass of potential entrants is fixed in the model.
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we can write

A ≡

(∑
n

∫
ω∈Ωn

e
θ(ω)
σ qn(ω)

σ−1
σ dω

) σ
σ−1

Lprod

=

 N∑
n=1

A
σ−1
σ

n

(
Lprodn

Lprod

)σ−1
σ


σ
σ−1

=

 N∑
n=1

A
σ−1
σ

n

(
L̄prodn Mn

L̄prod
∑N

n=1Mn

)σ−1
σ


σ
σ−1

, (20)

where Lprod =
∑N

n=1 L
prod
i , and N is the maximum age that we consider in the simulation.

In addition, L̄prodn is the average employment of production workers of age-n firms, and L̄prod

is the average employment of production workers of all firms. Mn ≡
∫
ω∈Ωn

dω is the measure

of age-n firms that are active. We then define the normalized productivity Ãn = AnM
1

1−σ
n .

Note that the difference between Ãn and An is that the former does not take into account

the variety effect, reflected by the number of active firms in our model.

Finally, the log (or percentage) change in average labor productivity can be decomposed

as

dA

A
=

N∑
n=1

[
contrin

(
d log(Ãn) +

σ

σ − 1

dfracn
fracn

+ d log

(
L̄prodn

L̄prod

))]
+

1

σ − 1

dM

M
, (21)

where the weight is defined as contrin ≡ fracnÃ
σ−1
σ

n

(
L̄prodn

L̄prod

)σ−1
σ
/
∑N

n=1 fracnÃ
σ−1
σ

n

(
L̄prodn

L̄prod

)σ−1
σ

and fracn is the fraction of active firms that are n years old among all active firms. The

total mass of active firms is simply denoted by M =
∑N

n=1Mn.

There are four terms related to the change in average productivity in equation (21). First,

term d log(Ãn) is the change in normalized productivity for each age group. Second, σ
σ−1

dfracn
fracn

reflects the change in population shares for different age groups. Third, d log
(
L̄prodn

L̄prod

)
is the

change of the average size of age-n firms (relative to the overall mean). The final term,
1

σ−1
dM
M

, reflects the variety effect. Figure 6 plots these terms, when we move from our

baseline level of imperfect information (with σε = 1.36) to perfect information wherein all

entrants know the true value of θ. In Figure 6, the blue curves with dots show the results for

our baseline model where firms can endogenously enter and exit, while the red curves with

square markers indicate the results for an alternative model without such endogenous entry

and exit, by setting the per-period fixed costs f to zero.

Panel (a) illustrates that the group-specific productivity increases for all groups, but

the gains are larger among young firms than among old firms. We also can see that these

disproportionately larger gains among young firms are more pronounced in our baseline

model with endogenous entry and exit (blue curves with dots). As shown in Panel (b), the
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population shares of young firms drop significantly, while old firms above age nine increase

their population shares in our baseline model with endogenous entry and exit, while this

mechanism is absent in the alternative model (red curves with square markers). Selection

gets tougher when the information friction becomes less severe, and this leads to a “better”

selected group of firms operating in the economy. We discussed this in the previous section

but we now see this extensive margin effect operates more prominently among young firms,

highlighting the importance of post-entry selection especially among young incumbent firms.

Relatedly, the average relative size of firms measured by employment increases among young

firms but decreases among old firms, as shown by Panel (c). In addition, the same disparity

between young and old firms caused by the existence of the extensive margin can be seen

by comparing the two curves in Panel (c). Finally, from Panel (d) we can see that the mass

of firms declines for each age group after σε declines in our baseline model with endogenous

entry and exit.23

5.3.3 Cross-regional analysis

This subsection presents our cross-regional analysis. As suggested by Fact 3 in Section 2.2,

firms may face different levels of informational imperfection in different regions due to com-

munication barriers and differences in capabilities of local managers and/or in quality of

management practices. But empirically pinpointing the drivers is beyond the scope of our

paper and thus we are still left to speculate on what form of policies would be ideal for coun-

tries where firms suffer informational frictions. Instead, this subsection uses our model and

calibration approach described above to explore the degree of informational imperfection and

the potential productivity gains from eliminating information frictions across regions. As

demonstrated in Subsection 5.3.1, the potential gains from eliminating information frictions

in the model depends not only on the degree of informational imperfection, but also parame-

ters such as the fixed operating costs. Thus, our quantitative investigation takes into account

cross-regional heterogeneity in these parameters and sets their values to be consistent with

the corresponding moments.

We exploit cross-regional differences in the parameters governing learning (σθ and σε),

age-dependent volatility of labor productivity (κ0 and κ1), and the fixed cost (f). We use

data from eight major regions/countries of the world: Africa, Middle East, Latin America,

Eastern Europe, ASEAN countries, China, Western Europe, and the United States. Similar

to the baseline calibration, we target the covariance and variance of the youngest and oldest

firms, together with the incumbent exit rates in each region. These eight regions do not

23This panel shows the result only for the baseline model with endogenous entry and exit because the
mass of firms is fixed in the alternative model without endogenous entry and exit.
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exhaust all foreign countries that Japanese multinational firms operate in, but they cover

the majority of firm sales in our data. In addition, they also display significant differences

in the income levels and business environments, and contain countries that are relatively

homogeneous within each region. Online Appendix Table OA.17 provides the full list of

countries in each region.

Panel A of Table 12 presents the calibrated parameters by region and the corresponding

model moments. Each set of parameters enables us to precisely match the data moments, so

we omit them from the table to save space and report them in Online Appendix OA.18. We

find that Africa, Middle East, Latin America, and Eastern Europe have higher values of σε

than the other regions, which are driven by their higher covariance of forecast errors targeted

in the calibration. Firms in Latin America and Eastern Europe have higher values of σθ than

the other regions. There is also some variation in the calibrated age-dependent volatility.

One thing to notice is that the high value of σθ calibrated for Latin America pushes its

age-dependent volatility parameter κ1 to zero, as learning combined with the oldest firms’

volatility are sufficient to generate the observed variance of FEs of the youngest firms in this

region. In contrast, while the variance of forecast errors is high in ASEAN, the covariance of

forecast errors is low relative to other regions, leading to the age-dependent volatility picking

up most of the dynamics of forecast errors with the implied size of the learning parameters

being small.

Our calibration also reveals large differences in the per-period fixed cost across regions.

For example, firms in the United States, Western Europe, Africa and Middle East face the

highest fixed costs, which are associated with the high exit rates in these regions. While the

values of the learning parameters in China, σθ and σε, are similar to those in the United

States and Western Europe, the exit rates of Japanese firms in China are much lower, which

implies a lower fixed cost f . In contrast, firms in Latin America and Eastern Europe face

much higher levels of uncertainty and information frictions due to higher values of σθ and σε.

To match similar exit rates as in the United States and Western Europe, the model suggests

that the fixed costs of operating in these countries are also low.

Equipped with the calibrated economies by region, we then assess the productivity gain

from eliminating informational imperfection. Moving from the calibrated economy to perfect

information, σε = 0, we report the increase in labor productivity in percentage terms in the

last column of Panel A of Table 12. ASEAN, Western Europe and the United States have

the lowest gains in labor productivity, 3.54%, 6.95% and 7.11%, respectively. The gains from

removing informational imperfection are only slightly larger in Latin America and China.

Firms in Africa, Middle East, and Eastern Europe have the highest gains from eliminating

the information friction, 12.56%, 12.16%, and 9.45%, respectively.
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Table 12: Calibration and Counterfactuals by Region

Parameters Model Moments Info. Gains

Region σθ σε σ2
θ/σ

2
ε σν1 σν10 f Cov1 Cov10 V ar1 V ar10 exit rate %∆ Q/L

Panel A: change five parameters

Africa 0.86 2.57 0.11 0.51 0.37 0.0152 0.040 0.020 0.186 0.100 0.105 12.56
Middle East 0.83 2.64 0.10 0.58 0.45 0.0142 0.038 0.019 0.226 0.134 0.102 12.16
Eastern Europe 1.41 1.80 0.62 0.58 0.32 0.0079 0.068 0.014 0.283 0.072 0.101 9.44
Latin America 1.62 1.66 0.95 0.39 0.39 0.0070 0.073 0.013 0.218 0.097 0.103 7.13
ASEAN 0.44 1.50 0.09 0.70 0.34 0.0075 0.008 0.006 0.264 0.072 0.078 3.54
China 1.12 1.48 0.57 0.64 0.31 0.0074 0.044 0.010 0.276 0.065 0.089 7.16
Western Europe 0.91 1.47 0.39 0.50 0.31 0.0131 0.034 0.009 0.179 0.065 0.106 6.95
United States 0.78 1.49 0.27 0.52 0.31 0.0147 0.028 0.009 0.180 0.063 0.110 7.11

Panel B: change four parameters, fix f

Africa 0.86 2.57 0.11 0.51 0.37 0.0093 0.039 0.020 0.184 0.098 0.073 9.77
Middle East 0.83 2.64 0.10 0.58 0.45 0.0093 0.037 0.018 0.225 0.130 0.074 9.83
Eastern Europe 1.41 1.80 0.62 0.58 0.32 0.0093 0.068 0.015 0.281 0.072 0.112 9.86
Latin America 1.62 1.66 0.95 0.39 0.39 0.0093 0.071 0.014 0.219 0.098 0.125 7.84
ASEAN 0.44 1.50 0.09 0.70 0.34 0.0093 0.011 0.006 0.268 0.072 0.102 3.87
China 1.12 1.48 0.57 0.64 0.31 0.0093 0.042 0.010 0.280 0.065 0.104 7.70
Western Europe 0.91 1.47 0.39 0.50 0.31 0.0093 0.034 0.010 0.177 0.066 0.081 5.93
United States 0.78 1.49 0.27 0.52 0.31 0.0093 0.029 0.008 0.177 0.063 0.077 5.55

Notes: Panel (A) shows the results when we re-calibrate five parameters for each region (σθ, σε, κ1, κ0, f). We present
age-dependent volatility σν1 , σν10 instead of κ1, κ0 to facilitate interpretation. We target five moments in this calibration,
Cov(FEn−1,n, FEn,n+1) for n = 1 and n ≥ 10, V ar(FEn,n+1) for n = 1 and n ≥ 10 and incumbent exit rates, respectively.
%∆Q/L is the percentage change in labor productivity when we change the model from the calibrated imperfect information
case to perfect information. Panel (B) reports the results when we re-calibrate the learning and uncertainty related parameters
but keep the fixed costs at the baseline value f = 0.0093. We target the first four moments but do not attempt to match the
exit rates in the data. The model matches the data moments well (other than the untargeted exit rates in Panel B). To save
space, we report the data moments in Online Appendix Table OA.18. A full list of countries in each region can be found in
Online Appendix Table OA.17.

In general, regions with larger σε and σθ tend to have larger gains from moving toward

perfect information. It is clear that higher σε leads to noisier signals and potentially more

misallocation at both the intensive and extensive margins. A higher value of σθ, on the

other hand, increases the benefit of eliminating the information friction, as there is much

more to learn over the life cycle.24 For instance, if we just focus on the learning parameters

σθ, σε, our model would imply that the gains from eliminating informational imperfection

should be higher in China and Latin America than Western Europe and the United States.

However, when disciplined by firms’ exit rates in different regions, we find that the fixed

costs in Latin America and China are much smaller than those in Western Europe and the

United States. This in turn reduces the gains from eliminating informational imperfection

at the extensive margin, and thus dampens the difference between these regions. Indeed,

as is reported in Panel B of Table 12, when we keep the fixed cost at the baseline level

for all regions, the gains from eliminating informational imperfection in Latin America and

24Firms in Latin America and Eastern Europe have higher values of σθ than the other regions, and their
signal-to-noise ratios are the highest among the eight regions. This is broadly consistent with a view that
firms acquire information optimally by paying a cost, which makes σε (or equivalently, the signal-to-noise
ratio, σ2

θ/σ
2
ε) endogenous to the level of σθ (see Sims (2003); Luo (2008); Mackowiak and Wiederholt (2009)).
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China become about 1.77% and 2.26% higher than those numbers in Western Europe and

the United States, instead of being 0.01% and 0.32% higher. Another impact of keeping

the fixed cost constant across the regions is that the gain from eliminating informational

imperfection for Africa and the Middle East becomes smaller and closer to that for Eastern

Europe, as the calibrated fixed cost is the highest in Africa among all regions.

These calibrated parameters and the associated productivity gains are based on the sam-

ple of Japanese firms, and therefore we need caution before generalizing our results. On

the one hand, one could argue that local firms may face with less severe information fric-

tions than foreign owned firms because of possible barriers such as time zone differences

that make intrafirm communication with parents firms difficult. On the other hand, one

could also argue that foreign owned firms are able to make more accurate forecasts due

to their superior management practices, as extensively documented in the literature (e.g.

Bloom and Van Reenen (2007) and Bloom and Van Reenen (2010b)). Our view is that

the derived results from our quantitative exercises is broadly consistent with that firms in

regions/countries where better managers/management practices are available face with less

severe informational constraints, while factors that make intrafirm communication difficult

such as large time differences lead to more severe informational constraints. The result that

firms gains more in Africa, Middle East, and Eastern Europe than in China, ASEAN, West-

ern Europe and the United States appears to be consistent with the former argument. In

contrast, the relatively less severe imperfect information and the small associated productiv-

ity losses in ASEAN and China are consistent with the latter argument. We believe that our

cross-region analysis is a step ahead of the literature on firm-level information imperfection

and misallocation, which usually focuses on a small number of countries; however, additional

empirical investigation would be useful to provide more concrete causal evidence.

5.3.4 Sensitivity analysis

In this subsection, we compare the preceding results obtained in an industry equilibrium

model where total expenditure and wage rates are exogenous to those under general equilib-

rium. To do so, we add two more conditions: (1) total expenditure by the consumers that

equals their labor income plus aggregate firm profits, and (2) total labor demand that equals

total (inelastic) labor supply. Columns under “Fixed J” in Table 13 present the similar

comparative statics as those in Table 11, now under general equilibrium. We find similar

quantitative predictions: increasing σε from the baseline value to 2.50 lowers the aggregate

labor productivity by 4.0% and moving toward perfect information increases it by 5.9%.

The columns under “free entry” in Table 13 go a step further and allow the mass of

potential entrants, J , to be determined by a zero net profit condition. Instead of assuming
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that potential entrants can draw their initial productivity ϕ0 without any cost, we assume

that they have to pay an entry cost fe in order to make such draws. We set this entry

cost to the expected net profit of entrants in our baseline equilibrium. This entry cost will

ensure that J = 1 is consistent with a free-entry, industry equilibrium model. As is shown

in the “free entry” columns in Table 13, the equilibrium mass of potential entrants is close

to one, which makes the free-entry general equilibrium model comparable with our baseline

model with a fixed J .25 The loss of productivity from varying σε from 1.36 (the baseline

value) to 2.50 reduces productivity by 4.5%, while moving toward perfect information raises

productivity by 7.5%. Our message from these two general equilibrium settings is that the

impact of eliminating the information friction on aggregate labor productivity is not sensitive

to our assumption that wages, aggregate expenditures, and the mass of potential entrants

are exogenous.

Table 13: The Impact of σε Under General Equilibrium

Fixed J Free entry

High Info. Friction Baseline Perfect Info. High Info. Friction Baseline Perfect Info.
σε = 2.50 σε = 1.36 σε = 2.50 σε = 1.36

J 1.000 1.000 1.000 1.043 1.072 1.245
aggregate profits 0.174 0.180 0.203 0.053 0.059 0.057
Mass of Active 12.616 11.858 10.439 11.908 11.115 9.741
P 0.329 0.319 0.306 0.330 0.317 0.295
Emp 1.000 1.000 1.000 1.000 1.000 1.000
Mean θ 0.563 0.729 0.974 0.590 0.774 1.106
Mean ϕ 0.065 0.066 0.092 0.074 0.078 0.126
Mean φ 0.173 0.215 0.290 0.184 0.232 0.340
Labor Prod 3.258 3.395 3.594 3.187 3.335 3.584
∆% Labor Prod -4.03 5.88 -4.45 7.47

Notes: The first three columns show parameters and equilibrium outcomes in an alternative general equilibrium model where
the potential mass of entrants J is fixed at one while total expenditure equals labor income plus aggregate firm profits (and
total labor equala total inelastic labor supply which is normalized at one). The last three columns show results from a model
where we further allow J to be endogenous and determined by a free-entry condition. We set σε = 2.5 in the “High Info.
Friction” case.

6 Conclusion

In this paper, we use firm-level panel data on sales forecasts to directly detect imperfect

information and learning over the life cycle of firms. We provide novel evidence of imperfect

information faced by firms and its gradual resolution: the variance of forecast errors declines

with firms’ experience and the covariance of forecast errors is positive and declines with firms’

experience. We then develop a quantitative model of heterogeneous firms that learn about

25Note that the equilibrium J is not exactly one since we are now considering a general equilibrium model
instead of an industry equilibrium model. We choose fe so that J is exactly one in an industry equilibrium
model, consistent with our baseline.
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their demand over the life cycle and show how it can be used to decompose the variance of

forecast errors observed in data into learning and any other components. The contribution

of learning to the change in the variance of forecast errors over the firm’s life cycle ranges

between 20% to 40%. We also demonstrate how to use firm-level data on forecast errors with

a clean mapping from data to the learning parameters in the model. We calibrate the model

to quantify cross-region/country differences in the degree of informational imperfections and

the potential gains from eliminating informational imperfections. We find the prominent

role of entry and exit of firms in driving the potential gains from eliminating informational

imperfections, ranging from 3.5% in ASEAN countries to 12.5% in Africa.
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7 Appendix

7.1 Proof for Proposition 1

We derive several expressions concerning forecast errors first. The firm’s revenue can be

expressed as

Rn = pnqn =
(
Y P σ−1eθ

)1/σ
q1−1/σ
n

=

(
σ

σ − 1

)1−σ

Y P σ−1

(
b(ϕn−1, s̄n−1, n− 1)

w

)σ−1

eθ/σϕ1−1/σ
n .

Therefore, (log) forecast error of sales are

FElog
n,n+1 ≡ logRn+1 − logEnRn+1 =

θ

σ
+
σ − 1

σ
logϕn+1 − logEn(eθ/σϕ

σ−1
σ

n+1)

=
θ

σ
− logEn(eθ/σ)︸ ︷︷ ︸

FEθn,n+1

+
σ − 1

σ
logϕn+1 − logEn(ϕ

σ−1
σ

n+1)︸ ︷︷ ︸
FEϕn,n+1

=
θ − µn
σ

− σ2
n

2σ2
+

(σ − 1)νn+1

σ
−

(σ − 1)2σ2
νn+1

2σ2
. (22)

From equation (22), it is straightforward to show that, without selection on θ,

Cov(FElog
n−1,n, FE

log
n,n+1) =

σ2
n

σ2
=

σ2
θσ

2
ε

(σ2
ε + nσ2

θ)σ
2
, V ar(FElog

n,n+1) =
σ2
n + (σ − 1)2σ2

νn+1

σ2
.

For the first part of the proposition, we can rewrite equation (22) as

FElog
n−1,n =

(1− ζ(n− 1, λ))(θ − θ̄)− ζ(n− 1, λ)
∑n−1
i=1 εi
n−1

σ
−
σ2
n−1

2σ2
+

(σ − 1)νn
σ

−
(σ − 1)2σ2

νn

2σ2
,

(23)

where

λ ≡ σ2
θ

σ2
ε

; ζ(n− 1, λ) ≡ (n− 1)λ

1 + (n− 1)λ
.

Note that λ defined above is the signal-to-noise ratio. Based on equation (23), we calculate

the variance of forecast error as

V ar(FElog
n−1,n) =

ζ(n− 1, λ)2σ2
ε

(n− 1)σ2
+

(1− ζ(n− 1, λ))2λσ2
ε

σ2
(24)

=
σ2
ε

σ2

( λ

1 + (n− 1)λ

)
+

(σ − 1)2σ2
νn

σ2
.
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One can see that the variance of forecast errors declines with n, as both the first and the

second terms decrease with n.

For the second part of the proposition, one can calculate that

Cov(FElog
n−1,n, FE

log
n,n+1) =

σ2
n

σ2
=

σ2
θσ

2
ε

(σ2
ε + nσ2

θ)σ
2
> 0,

as long as we have random informational shocks, εi (i.e., σ2
ε > 0). This means as long as we

have random εi, the forecast errors in two consecutive periods are positively correlated.

Finally, it is straightforward to observe and calculate that

V ar(FElog
n,n+1)− Cov(FElog

n−1,n, FEn,n+1) =
(σ − 1)2σ2

νn

σ2
,

which means that the difference between the variance of forecast errors (made at age n)

and the autocovariance of forecast errors (made at age n − 1 and age n) has a one-to-one

relationship with the (age-dependent) volatility of productivity shocks.

7.2 Definition of Equilibrium

Definition 1 A steady-state equilibrium of the model is defined as follows:

1. policy functions of optimal employment l(ϕn−1, s̄n−1, n − 1) that maximizes the per-

period profit function as in equation (8);

2. firms’ prices in the current period p (θ, ϕn, b(ϕn−1, s̄n−1, n− 1)) that clear the market,

i.e., equation (10);

3. value functions, V (ϕn−1, s̄n−1, n − 1), and policy functions o(ϕn−1, s̄n−1, n − 1), of

whether to stay (= 1) or exit (= 0) , that are consistent with equation (14);

4. a measure function of firms λ (ϕn−1, s̄n−1, n− 1, θ) that is consistent with the aggregate

law of motion. This measure function of firms is defined at the beginning of each period

(i.e., after the exogenous exit takes place but before the endogenous mode switching

happens). In particular, in each period, an exogenous mass J of entrants draw θ and

ϕ0 from the corresponding distributions. Therefore, the measure of entrants with state

variables (ϕ0, θ) is

λ (dϕ0, s̄0, 0, dθ) = (1− η)Jgθ (θ) dθ × gϕ0 (ϕ0) dϕ0,

where gθ (·) and gϕ0 (·) are the density functions of the distributions for θ and ϕ0,
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respectively. The measure function for incumbent firms should be a fixed point of the

aggregate law of motion, i.e., given any Borel set of s̄n, ∆s, and any Borel set of ϕn,

∆ϕ, measures of firms with n ≥ 2 satisfy

λ (∆ϕ,∆s, n, θ) =

∫
ϕn−1,s̄n−1,θ

1 (s̄n ∈ ∆s, ϕn ∈ ∆ϕ)× o(ϕn−1, s̄n−1, n− 1)×
(1− η) Pr (s̄n|s̄n−1, θ) Pr (ϕn|ϕn−1)λ (dϕn−1, ds̄n−1, n− 1, dθ)

.

5. the price index P is constant over time and must be consistent with consumer opti-

mization (5):

P 1−σ =
∑
n≥1

∫
ϕn−1,s̄n−1,θ

eθ × p (θ, ϕn, b (ϕn−1, s̄n−1, n− 1))1−σ × (1− η)×
o (ϕn−1, s̄n−1, n− 1)× λ (dϕn−1, ds̄n−1, , n, dθ)

.

7.3 Aggregate Labor Productivity

We define aggregate labor productivity as the aggregate output divided by total labor input,

including labor used for production as well as paying fixed costs and entry costs. The

aggregate output follows our definition of the CES composite of different varieties in equation

(3) in the paper. In the steady state, we can express the CES composite integrating over

the mass of firms with different state variables:

Q =

∑
n≥1

∫
ϕn−1,s̄n−1,θ

eθ/σq (ϕn, b (ϕn−1, s̄n−1, n− 1))
σ−1
σ × (1− η)×

o(ϕn−1, s̄n−1, n− 1)× λ (dϕn−1, ds̄n−1, n− 1, dθ)

 σ
σ−1

.

Labor is used for paying variable as well as fixed costs. Denote the demand for labor from

variable costs as Lprod, and the demand for labor from fixed costs as Lfixed, we have:

Lprod =
∑
n≥1

∫
ϕn−1,s̄n−1,θ

l (b (ϕn−1, s̄n−1, n− 1))
σ−1
σ × (1− η)×

o(ϕn−1, s̄n−1, n− 1)× λ (dϕn−1, ds̄n−1, n− 1, dθ)
;

Lfixed = f
∑
n≥1

∫
ϕn−1,s̄n−1,θ

(1− η)o(ϕn−1, s̄n−1, n− 1)× λ (dϕn−1, ds̄n−1, n− 1, dθ) .

Finally, aggregate labor productivity is defined as

Q

L
=

Q

Lprod + Lfixed
.

Note that there is no entry costs in our baseline model. We introduced entry costs f e

which firms have to pay to draw ϕ0, θ in the “Free Entry” model in Section 5.3.4. In this

case, L should also include labor used for entry, i.e., L = Lprod + Lfixed + Lentry, where

Lentry = Jf e.
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Figure 5: The Impact of σε on Aggregate Outcomes

(a) P (b) Q/L

(c) Corr (log φ, log b) (d) Corr (θ, s̄)

(e) Average Incumbent θ (f) Relative Mass of Firms: M

Notes: Panels (a) to (f) shows the aggregate industry price index, labor productivity, correlation between
log(φ) and log(b) among incumbents, correlation between θ and s̄ among incumbents, average incumbent
θ and equilibrium mass of firms under different fixed costs f and different values of σε. All variables are
normalized to one in the case σε = 1.36, the calibrated value in our baseline model. log φ is defined as the
combination of labor productivity and demand, (σ − 1) logϕ+ θ, which determines the size of the firm in a
static model. b is defined as in equation (9). The blue dotted line indicates a model with fixed costs f at
the value in the baseline calibration, while the red line with squares indicates a model with zero fixed costs
(no endogenous entry/exit).
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Figure 6: Decomposing the Impact of σε Across Age Groups: σε = 1.36→ Perfect Informa-
tion

(a) d log Ãn (b) σ
σ−1

dfracn
fracn

(c) d log(L̄prodn /L̄prod) (d) Firm Mass

Notes: Panels (a) to (c) plot the three key components in the change in normalized industry labor pro-
ductivity according to equation (21), contributed by firms of different ages n (capped by 10 years), when
changing the model from the baseline imperfect information (σε = 1.36) to a dynamic model in which firms
have perfect information about θ. The blue dotted line represents the case in which the fixed costs f are
kept at the baseline value, 0.0093. The red line with squares represents the case where f = 0, i.e., without
endogenous entry/exit. Panel (d) shows the mass of firms at different ages in the imperfect and perfect
information model, respectively.
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