Uncertainty, Investment and Cash Holding: Theory and Firm-level Evidence

Aubhik Khan¹ Tatsuro Senga² Julia K. Thomas³

¹The Ohio State University

²Queen Mary University of London, ESCoE, and RIETI

³The Ohio State University and NBER

25 October 2018 @ ESRI International Conference

Recent business cycles in Japan

- 2008 Q3: Lehman Brothers filed for bankruptcy (15 September, 2008)
- 2011 Q1: The Tohoku earthquake (11 March, 2011)
- 2014 Q1: Consumption Tax increased to 8% from 5%

< 🗇 🕨

Deleveraging

• Long-Term Debt / Total Assets

Increasing cash

• (Cash + Short-term Investment) / Total Assets

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q @ 4 / 16 High Sales Growth Volatility

$$\sigma_{i,t} = \frac{1}{10} \left[\sum_{\tau=-4}^{\tau=+5} (g_{i,t+\tau} - \bar{g}_{i,t})^2 \right]^{\frac{1}{2}}$$

- $g_{i,t} = log(sales_{i,t}) log(sales_{i,t-1})$, for firm *i* and year *t*.
- Cross-sectional average: $\sigma_t^{mean} = mean \{\sigma_{i,t}\}_{over i}$

5/16

This paper

What is the role of uncertainty/volatility in driving Japanese firms' investment and financial behaviors?

- Build a general equilibrium model with heterogeneous firms with default risk
- Test the prediction of the model using Japanese micro-level data

This paper

What is the role of uncertainty/volatility in driving Japanese firms' investment and financial behaviors?

- Build a general equilibrium model with heterogeneous firms with default risk
- Test the prediction of the model using Japanese micro-level data

Key model ingredients:

•
$$y = \varepsilon k^{\alpha} n^{\nu}$$

- heterogeneity of ε (firm-level productivity)
- a conditional volatility of ε (uncertainty)
- an optimal scale of capital $k^*(\varepsilon)$
- firms can borrow b > 0, alternatively have financial savings b < 0

(Timing within a Period)

(Key model ingredients)

$$n^{*}(k,\varepsilon) = \max_{n} [\varepsilon k^{\alpha} n^{\nu} - \omega n]$$

$$\pi(k,\varepsilon) = \varepsilon k^{\alpha} n^{*} (k,\varepsilon)^{\nu} - \omega n^{*} (k,\varepsilon)$$

$$x = \pi(k,\varepsilon) + (1-\delta)k - b - \xi$$

Values of firms

x (wealth) and ε_i (firm-level productivity) identify a firm.

$$V^{0}(x, \varepsilon_{i}) = \max\{V^{1}(x, \varepsilon_{i}), 0\}$$

$$V^{1}(x,\varepsilon_{i}) = \pi_{d}x + (1-\pi_{d})V^{2}(x,\varepsilon_{i})$$

$$V^{2}(x,\varepsilon_{i}) = \max_{k',b'\in\Phi(x,\varepsilon_{i})} \Big[D + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(x'_{j},\varepsilon_{j}) \Big],$$

subject to :

$$D = x - k' + q(k', b', \varepsilon_i) b'$$

$$\Phi(x, \varepsilon_i) = \{(k', b') \in R_+ \times R \mid D(x, \varepsilon, k', b') \ge 0\}$$

$$x'_j = \pi(k', \varepsilon_j) + (1 - \delta)k' - b' - \xi$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

Default risk and loan rates

 $q(k', b', \varepsilon_i)$: loan rates, which depend on the probability of default

$$q(k', b', \varepsilon_i) b' = \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[\underbrace{\chi(x'_j, \varepsilon_j) b'}_{repayment} + \underbrace{\left[1 - \chi(x'_j, \varepsilon_j)\right] \min\{b', \rho(1 - \delta) k'\}}_{default} \right].$$

• $\chi\left(x_{j}', \varepsilon_{j}\right)$: default probability

Minimum savings policy

 $B^{w}(\varepsilon)$ is the minimum savings policy ensuring unconstrained firm of type ε adopting $k^{*}(\varepsilon)$ will remain unconstrained and never default.

$$B^{w}(arepsilon) = \min_{\{arepsilon_{j} \mid \pi^{arepsilon}_{ij} > 0\}} \widetilde{B}\Big(k^{*}\left(arepsilon
ight)$$
 , $arepsilon_{j}\Big)$

$$\widetilde{B}(k,\varepsilon) \equiv \pi(k,\varepsilon) - \xi + (1-\delta) k + \min\left\{-k^*(\varepsilon) + q_0 B^w(\varepsilon), 0\right\}$$

 $\widetilde{B}(k,\varepsilon)$ is the largest *b* a type (k,ε_i) firm can owe this period and implement $k^*(\varepsilon_i)$ and $b' = B^w(\varepsilon_i)$ while satisfying $D \ge 0$.

Parameterization

TABLE 1. Parameter Values

β	ν	δ	α	η	ρ	σ^2	ξ
0.96	0.60	0.07	0.2533	2.416	0.90	0.0331	0.0468

TABLE 2. Moments

Description	Data	Model	
Real interest rate	0.96	0.96	
Labor share	0.60	0.60	
Investment to capital ratio	0.07	0.07	
Capital to output ratio	2.300	2.269	
Average hours worked	0.33	0.33	
Persistence of productivity	-	0.90	
Debt to capital ratio	0.180	0.180	
Cash to capital ratio	0.130	0.129	

Estimated parameters are in red.

Decision rules

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Aggregate moments

 σ and ξ are varied to show that debt falls and cash rises with uncertainty and default risk.

Panel Regression

Uncertainty is positively related to cash holdings at the firm level

	Cash-to-asset ratio								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Sales volatility	0.094***		0.061***		0.028***		0.026***		
	(0.0115)		(0.0109)		(0.00914)		(0.00940)		
Profit volatility		0.159***		0.121***		0.030***		0.032***	
		(0.0353)		(0.0335)		(0.0294)		(0.0304)	
Year FE	Ν	Ν	Y	Y	Y	Y	Y	Y	
Industry FE	Ν	Ν	Υ	Y	Ν	Ν	Ν	Ν	
Firm FE	Ν	Ν	Ν	Ν	Y	Υ	Y	Y	
Observations	25017	25473	25017	25473	25017	25473	22430	22676	
R ²	0.156	0.169	0.418	0.422	0.802	0.799	0.823	0.822	

Summary

- We propose a general equilibrium model of corporate cash-holdings, arising from uncertainty about productivity and default risk.
- The model predicts that cash rises with uncertainty faced by firms.
- We use Japanese micro-level data to validate our model's prediction empirically.

Policy implications

- It is easy to say policy should be transparent, consistent, evidence-based. But we know it is not:
 - Trump administration, upending U.S. trade policy and making it complex.
- Improve measurement of uncertainty faced by Japanese businesses.
 - Business surveys are useful but we should keep improving to reflect on what we should measure.
- Solution Evidence can be collected from academics to shape policy packages.
 - The UK Chancellor's policy announcement draws from the Business Productivity Reviews call for evidence.